
 

  

Abstract—This clinical study investigates whether the 
performance of hemiparetic stroke patients operating a non-
invasive Motor Imagery-based Brain-Computer Interface (MI-
BCI) is comparable to healthy subjects. The study is performed 
on 8 healthy subjects and 35 BCI-naïve hemiparetic stroke 
patients. This study also investigates whether the performance 
of the stroke patients in operating MI-BCI correlates with the 
extent of neurological disability. The performance is objectively 
computed from the 10×10-fold cross-validation accuracy of 
employing the Filter Bank Common Spatial Pattern (FBCSP) 
algorithm on their EEG measurements. The neurological 
disability is subjectively estimated using the Fugl-Meyer 
Assessment (FMA) of the upper extremity. The results show 
that the performance of BCI-naïve hemiparetic stroke patients 
is comparable to healthy subjects, and no correlation is found 
between the accuracy of their performance and their motor 
impairment in terms of FMA. 

I. INTRODUCTION 
rain-Computer Interface (BCI) is a communication 
system that directly translates brain signals into 

commands for controlling an external device [1], which 
bypasses the normal motor output neural pathways [2]-[4]. 
The brain signals can be acquired by scalp-recorded 
electroencephalogram (EEG) non-invasively from a subject. 
Studies have shown that distinct mental processes such as 
Event-Related Desynchronization or Synchronization 
(ERD/ERS) [5],[6] are detectable from EEG measurements 
for both real and imagined motor movements in healthy 
subjects [7]-[9]. Hence, Motor Imagery-based BCI (MI-
BCI), which translates the mental imagination of movements 
into commands, provides a promising communication 
channel for stroke patients who suffer from motor 
disabilities. 

The challenge in MI-BCI is the huge inter-subject 
variability with respect to the characteristics of the brain 
signals [1]. There are two approaches of operating a MI-
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BCI. In the operant conditioning approach, the subject 
learns to control a specific EEG feature that is hardwired in 
the BCI system [10]. In the machine learning approach, the 
BCI adapts to specific brain signals of the subject [1]. 
Recently, the latter approach has been shown to be very 
promising. Specifically, the Common Spatial Pattern (CSP) 
algorithm [1],[11] is effective in constructing optimal spatial 
filters that discriminates two classes of EEG measurements 
in MI-BCI [11]. Although the performance of this spatial 
filter is dependent on its operational frequency band, the 
Filter Bank Common Spatial Pattern (FBCSP) algorithm 
[12] addresses this issue by performing autonomous 
selection of key temporal-spatial discriminative EEG 
characteristics for MI-BCI. 

At present, there exists only one study which has 
investigated MI-BCI on a large healthy subject population 
[13]. Prior studies [1] were performed on BCI-artful healthy 
subjects who were experienced in operating MI-BCI. To the 
best of our knowledge, there exists only one study 
performed on BCI-naïve healthy subjects [14], and a limited 
number performed on stroke patients operating MI-BCI 
[11],[15],[16]. Similar studies were performed on stroke 
patients operating EEG-based but not MI-BCI [17]-[19]. 
Studies have shown that the performance of MI-BCI varied 
across subjects [11],[16], but the reasons have not been 
extensively investigated [16]. In addition, the performance 
of MI-BCI on BCI-naïve paralyzed patients are 
hypothesized to be comparable to those of healthy subjects 
[16], but this has yet to be investigated. 

Since stroke patients suffer from neurological damage, the 
portion of the brain that is responsible for generating 
ERD/ERS in MI-BCI could be compromised. Hence, the 
issue remains as to whether stroke patients are capable of 
operating MI-BCI effectively. Specifically, whether their 
performance in operating MI-BCI is correlated to the 
neurological damage present. This paper explicitly addresses 
this issue by performing a clinical study of non-invasive 
EEG-based MI-BCI on stroke patients. Hemiparetic stroke 
patients are recruited for this study because the Fugl-Meyer 
Assessment (FMA) [20] can quantitatively measure their 
motor impairment and recovery after post-stroke 
rehabilitation [21]. Hence, measuring the neurological motor 
function by FMA provides an indication of the neurological 
damage. This preliminary study will be extended to include 
functional Magnetic Resonance Imaging (fMRI) evaluation 
in the near future. Since ERD/ERS are detectable for both 
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imagined and real motor movements in healthy subjects [7], 
it is more intuitive for BCI-naïve hemiparetic stroke patients 
to perform actual tapping by the able arm and motor imagery 
by the paralyzed arm. 

The remainder of this paper is organized as follows. 
Section II provides a brief description of the FBCSP 
algorithm used in this clinical study. Section III describes 
the experimental studies and presents the results. Section IV 
concludes this paper with an analysis of the experimental 
results. 

II. FILTER BANK COMMON SPATIAL PATTERN 
The Filter Bank Common Spatial Pattern (FBCSP) 
algorithm shown in Fig. 1 comprises four progressive stages 
of EEG measurements processing: multiple bandpass filters 
using zero-phase Chebyshev Type II filters, spatial filtering 
using the CSP algorithm, feature selection of the CSP 
features, and classification of the selected CSP features. 
 

 
Fig. 1. Architecture of the proposed Filter Bank Common Spatial 
Pattern (FBCSP) machine learning approach 
 

The first stage employs a filter bank that bandpass filters 
the EEG measurements into multiple bands. The second 
stage performs spatial filtering on each of these bands using 
the CSP algorithm. Thus, each pair of bandpass and spatial 
filter yields CSP features that are specific to the frequency 
range of the bandpass filter. The third stage employs a 
feature selection algorithm to select the discriminative CSP 
features from the filter bank. The fourth stage employs a 
classification algorithm to model and classify the selected 
CSP features. Based on the experimental results of 
comparing different feature selection and classification 
algorithms for MI-BCI in [12], the Mutual Information Best 
Individual Feature (MIBIF) algorithm and the Naïve Bayes 
Parzen Window (NBPW) are used to select and classify the 
CSP features respectively in this paper. 

The neurophysiological background of MI-BCI is that 
motor activity, both actual and imagined [22],[23] causes an 
attenuation or increase of localized neural rhythmic activity 
called ERD/ERS [5],[6]. The Common Spatial Pattern 
(CSP) algorithm is highly successful in calculating spatial 
filters for detecting ERD/ERS [1]. The objective of spatial 
filtering employing the CSP algorithm [24] in MI-BCI is to 
compute the features whose variances are optimal for 
discriminating two classes of EEG measurements [24],[25]. 

The method employed by CSP is based on the 
simultaneous diagonalization of two covariance matrices 

[24],[26]. In summary, the spatially filtered signal Z of a 
single trial EEG E is given as 
 =Z WE , (1) 
where E is an N×T matrix representing the raw EEG 
measurement data of a single trial; N is the number of 
channels; T is the number of measurement samples per 
channel. W is the CSP projection matrix. The rows of W are 
the stationary spatial filters and the columns of W-1 are the 
spatial patterns.   

The spatial filtered signal Z given in (1) maximizes the 
differences in the variance of the two classes of EEG 
measurements. However, the variances of only a small 
number m of the spatial filtered signal are generally used as 
features for classification [24]. The m first and last rows of 
Z i.e. Zp, p∈{1..2m} form the feature vector Xp given in (2) 
as inputs to a classifier. 
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III. EXPERIMENTAL RESULTS 
This section describes the experiments performed in this 
study and presents the results. The experiments comprises: a 
comparison of the performance of MI-BCI using the FBCSP 
algorithm with prevailing approaches on a publicly available 
dataset; a study of MI-BCI on 8 healthy subjects who 
performed tapping and motor imagery respectively using the 
FBCSP algorithm; and a study of MI-BCI on 35 hemiparetic 
stroke patients using the FBCSP algorithm. 

A. Publicly available BCI Competition III dataset IVa 
The BCI Competition III dataset IVa [27] is collected 

from 5 subjects (labeled ‘aa’, ‘al’, ‘av’, ‘aw’, ‘ay’) who 
performed right hand and right foot imagination [28]. The 
data for each subject comprises 280 trials of EEG 
measurements from 118 electrodes. Two sets of experiments 
are performed. The first set extracts data from all electrodes 
0.5s to 2.5s after the visual cue. The second set extracts data 
from electrodes and time segments that are manually 
selected for each subject consistent with the experiment in 
[29]. FBCSP employed 9 bandpass filters and the NBPW 
classifier, whereas CSP employed the SVM classifier. CSP 
configured with a broad bandpass filter of 8-30Hz [24] in 
the first set, and configured with manually selected 
frequency for each subject in the second set. 

Fig. 2 shows the results of unbiased 10×10-fold cross-
validations performed using FBCSP, Iterative Spatio-
Spectral Pattern Learning (ISSPL) [29], and CSP. The 
regularization parameter and stopping iteration of ISSPL 
performed in [29] are manually selected. However, they are 
set to default values in this experiment to avoid ad-hoc 
tuning of the classifiers in order to make a fair comparison. 
The first set of results show that FBCSP yields a better test 
accuracy (89.9±0.9%) than ISSPL (81.3±2.0%) and CSP 
(87.6±0.9%), and the second set shows that FBCSP 
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(91.9±0.6%) is comparable to CSP (92±0.7%) and better 
than ISSPL (90.3±1.0%). Hence, the FBCSP algorithm is 
used in the subsequent experiments. 
 

aa al av aw ay AVG
50

55

60

65

70

75

80

85

90

95

100

A
cc

ur
ac

y 
(%

)

Test accuracy

 

 

CSPa
ISSPLa
FBCSPa
CSPs
ISSPLs
FBCSPs

 
Fig. 2. Experimental results on the test accuracies of 10×10-fold cross-
validations performed on BCI Competition III dataset IVa. The 3 dark 
blue, blue and cyan bars show the test accuracies of 10×10-fold cross-
validations performed using CSP, ISSPL and FBCSP on all channels 
and fixed time segment respectively, and the next yellow, red and 
brown bars on subject-specific channels and time segments selections. 
The vertical lines show the standard deviations of the test accuracies. 

B. Tapping versus imagery from 8 healthy subjects 
This dataset is collected using Neuroscan NuAmps from 

8 healthy subjects (labeled 1 to 8). These subjects are BCI-
artful who have prior experience in operating MI-BCI. The 
data is collected with approval from the Ethics Approval 
Board. The subjects performed left and right hand tapping in 
one session, and motor imagery in another separate session. 
The data for each subject comprises 160 trials of EEG 
measurements from 27 electrodes starting from 0.5s to 2.5s 
after the visual cue. The data from all trials are used without 
any removal of artifacts such as Electrooculogram (EOG). 
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Fig. 3. Experimental results on the EEG data collected from 8 healthy 
subjects for Brain-Computer Interface. The blue and red vertical bars 
show the test accuracies of 10×10-fold cross-validations performed 
using FBCSP on the EEG data of the subjects performing tapping and 
motor imagery respectively. The vertical lines show the standard 
deviations of the test accuracies. 
 

Fig. 3 shows the results of unbiased 10×10-fold cross-
validations performed using the FBCSP algorithm on the 
tapping versus motor imagery data. The results show a 
significant variation in inter-subject performance in 
operating MI-BCI. This is consistent with the finding in 
[11],[16]. It is observed that subject 4 performed well for 
tapping (82.7±3.1%) but poorly for motor imagery 
(64.34±2.8%); whereas subject 6 performed poorly for 

tapping (52.8±3.9%) but well for motor imagery 
(77.1±3.3%). Hence, the results also show a significant 
intra-subject variation between tapping and motor imagery 
for some subjects. The results show that the average 
accuracy of the 8 healthy subjects performing motor 
imagery (76.7±2.8%) is better than tapping (70.0±2.7%). A 
paired samples t-test on the accuracy of tapping and motor 
imagery for the healthy subjects yields a p-value of 0.22. 
Hence, there is no significant difference between the 
accuracy of tapping versus motor imagery for healthy 
subjects, which  is consistent with the evidence in the 
literature that suggests a shared neural substrate between 
imagined and executed movements [7]. 

C. Tapping and imagery from 35 hemiparetic patients 
This dataset is collected using Neuroscan NuAmps from 

35 hemiparetic stroke patients (labeled 1 to 35) who are all 
BCI-Naïve. The data is collected with approval from the 
Ethics Approval Board.  The extent of neurological deficit is 
estimated using the Fugl-Meyer Assessment (FMA) of the 
upper extremity. A further study of their neurological injury 
is ongoing using fMRI. Since the results in the previous 
experiment and evidence in the literature suggest a shared 
neural substrate between imagined and executed movements 
[7], the patients are instructed to perform tapping on the able 
arm and motor imagery on the paralyzed arm. The data for 
each patient comprises 160 trials of EEG measurements 
from 27 electrodes starting from 0.5s to 2.5s after the visual 
cue. The data from all trials are used without any removal of 
artifacts such as Electrooculogram (EOG). 
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Fig. 4. Experimental results on the EEG data collected from 35 
hemiparetic stroke patients for Brain-Computer Interface. The blue 
line with diamond markers shows the test accuracies of 10×10-fold 
cross-validations performed using FBCSP on the EEG data of the 
patients, the blue vertical line shows the standard deviations of the test 
accuracies, and black line with circle markers shows the Fugl-Meyer 
Assessment of the patient 
 

Fig. 4 shows the results of unbiased 10×10-fold cross-
validations performed using the FBCSP algorithm on the 
patients’ data. The results are sorted in ascending accuracy 
and a plot of the FMA of each patient is included. The 
results show that the average accuracy of the 35 hemiparetic 
stroke patients (78.5±2.3%) is better than the 8 healthy 
subjects (73.3±2.8%). The Pearson correlation coefficient 
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between the accuracy of each patient and their FMA is 0.19. 
Hence, this result shows that the performance of the 
hemiparetic stroke patients is not linearly correlated to their 
FMA. Since the performance of the hemiparetic stroke 
patients is better than healthy subjects, this shows that the 
neurological damage in the hemiparetic stroke patients does 
not significantly affect their capability of operating MI-BCI. 

IV. CONCLUSIONS 
This clinical study investigates whether BCI-naïve 
hemiparetic stroke patients are capable of operating a non-
invasive MI-BCI effectively compared to healthy subjects. 
The study was performed on 8 healthy subjects and 35 
hemiparetic stroke patients. The study also revealed that 
comparable performance is attainable from tapping versus 
motor imagery by BCI-artful healthy subjects. The study 
demonstrated that although hemiparetic stroke patients 
suffered from neurological injury, they were capable of 
operating MI-BCI as effectively as healthy subjects, and 
their performance is not correlated with the level of motor 
impairment as measured by FMA on the upper extremity. 

However, the performance of the hemiparetic stroke 
patients in this preliminary study may originate from the 
tapping by the able arm instead of motor imagery by the 
paralyzed arm. Hence, a further study on the spatial patterns 
of the hemiparetic patients is performed in [30] to verify the 
neurophysiological plausibility of the computed solution. 
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