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Abstract—In motor imagery-based Brain Computer
Interfaces (BCI), discriminative patterns can be extracted from
the electroencephalogram (EEG) using the Common Spatial
Pattern (CSP) algorithm. However, the performance of this
spatial filter depends on the operational frequency band of the
EEG. Thus, setting a broad frequency range, or manually
selecting a subject-specific frequency range, are commonly
used with the CSP algorithm. To address this problem, this
paper proposes a novel Filter Bank Common Spatial Pattern
(FBCSP) to perform autonomous selection of key temporal-
spatial discriminative EEG characteristics. After the EEG
measurements have been bandpass-filtered into multiple
frequency bands, CSP features are extracted from each of these
bands. A feature selection algorithm is then used to
automatically select discriminative pairs of frequency bands
and corresponding CSP features. A classification algorithm is
subsequently used to classify the CSP features. A study is
conducted to assess the performance of a selection of feature
selection and classification algorithms for use with the FBCSP.
Extensive experimental results are presented on a publicly
available dataset as well as data collected from healthy subjects
and unilaterally paralyzed stroke patients. The results show
that FBCSP, using a particular combination feature selection
and classification algorithm, yields relatively higher cross-
validation accuracies compared to prevailing approaches.

I. INTRODUCTION

Brain-Computer Interface (BCI) is a system that
empowers a user to command external devices, such as

a computer, wheelchair control [1] or prostheses [2], using
scalp-recorded electroencephalogram (EEG) measurements.
Studies have shown that the EEG measurements recorded
during mental imagination of movements can be translated
into commands. Thus, motor imagery-based BCI provides a
promising control and communication control to people
suffering from motor disabilities [3].

The Common Spatial Pattern (CSP) algorithm [4],[5] is
effective in constructing optimal spatial filters that
discriminates two classes of EEG measurements in motor-
imagery-based BCI [5]. However, the performance of this
spatial filter is dependent on its operational frequency band.
Classification performed on the CSP features generally
yields poor accuracies when the EEG measurements are
either unfiltered or have been filtered with an
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inappropriately selected frequency range [6]. Hence, setting
a broad frequency range or manually selecting a subject-
specific frequency range are commonly used with the CSP
algorithm [7].

To address the problem of manually selecting the
operational subject-specific frequency band for the CSP
algorithm, several approaches have been proposed. One
approach is the Common Spatio-Spectral Pattern (CSSP),
which optimizes a simple filter that employs a one time-
delayed sample with the CSP algorithm [8]. Another
approach is the Common Sparse Spectral Spatial Pattern
(CSSSP). It improves the CSSP algorithm by performing
simultaneous optimization of an arbitrary (Finite Impulse
Response) FIR filter within the CSP algorithm [7].
However, due to the inherent nature of the optimization
problem, the solution of filter coefficients is also strongly
dependent on the choice of initial parameters [6].

Recently, an alternative approach called the Sub-band
Common Spatial Pattern (SBCSP) was proposed and has
been shown to yield superior classification accuracy
compared against CSSP and CSSSP on a publicly available
dataset [6]. Instead of optimizing a single arbitrary FIR filter
within the CSP algorithm, SBCSP uses a Gabor filter bank
that decomposes the EEG measurements into multiple sub-
bands. Spatial filters that use the CSP algorithm are then
employed on each of these sub-bands. After obtaining sub-
band scores, recursive band elimination or a classification
algorithm is employed to fuse the sub-band score. Another
classification algorithm is then employed to classify the
fused sub-band score. Although SBCSP can use different
sub-band score fusion techniques and classification
algorithms, only the results from the use of the Support
Vector Machine (SVM) to fuse the sub-band score as well as
to perform classification are presented in [6]. Hence, a
comparative study of using different sub-band score fusion
techniques and classification algorithms are not available.

In this paper, a novel machine learning approach called
the Filter Bank Common Spatial Pattern (FBCSP) is
proposed for processing EEG measurements in motor
imagery-based BCI. FBCSP comprises four stages:
frequency filtering, spatial filtering, feature selection and
classification. In the first stage, the EEG measurements are
bandpass-filtered into multiple frequency bands. In the
second stage, CSP features are extracted from each of these
bands. In the third stage, a feature selection algorithm is
used to automatically select discriminative pairs of
frequency bands and corresponding CSP features. In the
fourth stage, a classification algorithm is used to classify the
CSP features. This paper also presents extensive
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experimental results using a selection of feature selection
and classification algorithms for use in FBCSP. The purpose
of this study is to recommend suitable feature selection and
classification algorithms for motor imagery-based BCI.

Section II describes the FBCSP approach and compares
it with the SBCSP approach. A brief description of the CSP
algorithm is then given in Section III. The feature selection
and classification algorithms studied in this paper are briefly
described in Section IV and Section V respectively.
Extensive experimental results of using FBCSP on a
publicly available dataset and experimental data collected
from healthy subjects as well as unilaterally paralyzed stroke
patients are given in Section VI. The results are also
compared against the SBCSP and the CSP with manually
configured bandpass filter parameters. Section VII
concludes this paper.

II. FILTER BANK COMMON SPATIAL PATTERN

The proposed Filter Bank Common Spatial Pattern
(FBCSP) machine learning approach is illustrated in Fig. 1.
It comprises four progressive stages of EEG measurements
processing: multiple bandpass filters using zero-phase
Chebyshev Type II filters, spatial filtering using the CSP
algorithm, feature selection of the CSP features, and
classification of the selected CSP features.

Fig. 1. Architecture of the proposed Filter Bank Common Spatial
Pattern (FBCSP) machine learning approach

The first stage employs a filter bank that bandpass
filters the EEG measurements into multiple bands. The
second stage performs spatial filtering on each of these
bands using the CSP algorithm. Thus, each pair of bandpass
and spatial filter yields CSP features that are specific to the
frequency range of the bandpass filter. The third stage
employs a feature selection algorithm to select the
discriminative CSP features from the filter bank. The fourth
stage employs a classification algorithm to model and
classify the selected CSP features.

Fig. 2. Architecture of Sub-Band Common Spatial Pattern (SBCSP) [6]

Fig. 2 shows the architecture of SBCSP [6]. Comparing
Fig. 1 against Fig. 2, the first, second, and fourth stages of
FBCSP are similar to SBCSP [6]. However, SBCSP

employs a Gabor fourier-based filterbank whereas FBCSP
employs a zero-phase Chebyshev Type II Infinite Impulse
Response (IIR) filterbank. The use of zero-phase filtering in
the FBCSP overcomes the non-linear phase shift caused by
the IIR filter. Furthermore, SBCSP computes a sub-band
score for each spatial filter, followed by recursive band
elimination or a classification algorithm to fuse the sub-band
score. SBCSP then employs another classification algorithm
to model and classify the fused sub-band score. In contrast,
the third stage of FBCSP in this paper employs a feature
selection algorithm to select discriminating CSP features;
the fourth stage employs a classification algorithm to model
and classify the selected CSP features. Hence, FBCSP is
more generalized because any feature selection and
classification algorithms from the machine learning and
computational intelligence literature can be employed. In
addition, SBCSP deploys all the spatial filters whereas
FBCSP deploys only those effective spatial filters whose
pairs of CSP features are selected. Hence, FBCSP employs
only a small subset of effective spatial filters instead. This
reduces the computational complexity as compared against
using the entire set of spatial filters.

The next section provides a brief description of the CSP
algorithm, followed by sections IV and V that provide a
brief description of the feature selection and classification
algorithms.

III. COMMON SPATIAL PATTERN ALGORITHM

The neurophysiological background of motor-imagery based
BCIs is that motor activity, both actual and imagined
[9],[10], causes an attenuation or increase of localized neural
rhythmic activity called Event-Related Desynchronization or
Event-Related Synchronization (ERS) respectively [11]. The
Common Spatial Pattern (CSP) algorithm is highly
successful in calculating spatial filters for detecting ERD
and ERS [4]. The objective of spatial filtering employing the
CSP algorithm [12] in BCI is to compute features whose
variances are optimal for discriminating two classes of EEG
measurements [12],[13].

The method employed by the CSP algorithm is based on
the simultaneous diagonalization of two covariance matrices
[12],[14]. In summary, the spatially filtered signal Z of a
single trial EEG E is given as

�Z WE . (1)
where E is an N�T matrix representing the raw EEG
measurement data of a single trial; N is the number of
channels; T is the number of measurement samples per
channel. W is the CSP projection matrix. The rows of W are
the stationary spatial filters and the columns of W-1 are the
common spatial patterns.

The spatial filtered signal Z given in (1) maximizes the
differences in the variance of the two classes of EEG
measurements. However, the variances of only a small
number m of the spatial filtered signal are generally used as
features for classification [12]. The m first and last rows of
Z i.e. Zp, p�{1..2m} form the feature vector Xp given in (2)
as inputs to a classifier.
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From the concept of cortical homunculus [15], different
areas of the cerebral cortex control movements of different
parts of the body [8]. In addition, the distinct areas of the
cerebal cortex control movements on the contralateral side
of the body [16]. For example, the region that controls the
feet is at the center of the vertex, the region that controls the
left hand is on the right hemisphere, and the region that
controls the right hand is on the left hemisphere [8]. Hence,
the spatial patterns of a motor action are verifiable with the
specific region that controls the motor action [4].

IV. FEATURE SELECTION ALGORITHM

Feature selection in pattern classification is defined as: given
a set of d features, select a subset of size k that leads to the
smallest classification errors. There are mainly two feature
selection approaches in the literature [17]: the wrapper
approach where features are selected using the classifier;
and the filter approach where the features are selected
independent from the classifier. Although the wrapper
approach may yield better performance, increased
computational effort is often required [17].

In Mutual Information (MI)-based feature selection, the
problem is defined as, given an initial set F with d features,
find the subset S�F with k features that maximizes Mutual
Information I(S;�) [18]. The MI between the two random
variables is [19]

� � � � � �; |I H H� �X Y Y Y X . (3)

where the entropy is of a d-dimensional random variable X
� �1 2, , dX X X�X � is

� � � � � �2log
x

H p x p x
�

� ��
X

X ; (4)

the conditional entropy of random variables X and Y is

� � � � � �2| , log |
x y

H p x y p y x
� �

� ���
X Y

Y X ; (5)

and p(�) are probability functions.
In pattern classification problems, the input features are

usually continuous variables and the class has discrete
values. Thus the MI between input features X and the class
� is

� � � � � �;� � � |I H H� �X X , (6)

where ���={1,…,N�}; and the conditional entropy is

� � � � � �2
1

| | log |
N

H p x p x dx
�

�

� �
�

� � � ��X
X , (7)

where N� is the number of classes.
In the wrapper approach, the conditional entropy in (7)

is simply

� � � � � �2
1

| | log |
N

H p p
�

�

� �
�

� � ��X X X , (8)

where p(�|X) is easy to estimate from the number of data
sample classified as class � using the classifier over the total
number of data samples. In the filter approach, this
conditional entropy is relatively harder to compute since it is

not easy to estimate p(�|X). The method of using Parzen
Window to estimate p(�|X) is briefly reviewed in section V.

The following feature selection algorithms are used in
this paper:

A. MIBIF algorithm

The Mutual Information based Best Individual Feature
(MIBIF) algorithm that is based on the filter approach is
described as follows:

� Step 1: Initialization
Initialize set of d features � �1 2, , dF f f f� � , set of

selected features S � � .

� Step 2: Compute the MI of features with the output class
Compute � �; 1.. ,i iI f i d f F� � �� .

� Step 3: Select the best k features
Repeat
Select the feature if that maximizes � �;iI f � using

� � � � � � � �
1.. ,

\ , | ; max ;
j

i i i j
j d f F

F F f S f I f I f
� �

� � �� � . (9)

Until S k�

The MIBIF feature selection algorithm requires a user-
defined parameter k to select the k best features.

B. MINBPW algorithm

The Mutual Information-based Naïve Bayesian Parzen
Window (MINBPW) [20] algorithm that is based on the
wrapper approach for the Naïve Baysian Parzen Window
(NBPW) classifier [20], is described as follows:
� Step 1: Initialization

Initialize set of d features � �1 2, , dF f f f� � , set of

selected features S � � .
� Step 2: Compute the MI of features with the output class

Compute � �; 1.. ,i iI f i d f F� � �� .

� Step 3: Select the first feature
Select the feature if that maximizes � �;iI f � using

� � � � � � � �
1.. ,

\ , | ; max ;
j

i i i j
j d f F

F F f S f I f I f
� �

� � �� � . (10)

where the MI is computed using (6) and the conditional
entropy is estimated using (8).

� Step 4: Greedy selection
Repeat
a) Compute � �; 1.. ,i iI f S i d f F� � � �� , the joint MI

between the feature i and selected features with the
output class where the conditional entropy is estimated
using (8).

b) Select next feature using
� � � �
� � � �

1.. ,

\ , |

; max ; .
j

i i

i j
j d f F

F F f S f

I f S I f S
� �

� �

� � �� �
(11)

Until � � � � � �� �; ;iS k I f S I S �� � � � �� �

The MINBPW algorithm also requires a user-defined
parameter k or a small � to stop the selection of features. The
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parameter � is set to 0.1 in this paper.

C. MIFS algorithm

The Sequential Forward Selection method or greedy
selection scheme is adopted by Battiti in the Mutual
Information based feature selection (MIFS) algorithm [18].
The MIFS algorithm is based on the filter approach [18].
The MIFS algorithm requires a user defined parameter k to
set the maximum number of features to select, or a small � to
stop the selection of features once there are no further
increase in MI beyond �. The user-defined value of 0.1 is
used for � in this paper

D. FRFS2 algorithm

In addition to the prevailing application of MI in feature
selection, Rough set theory (RST) [21] is also potentially
feasible in feature selection and significantly reduce the
pattern dimensionality [22]. However, RST is only capable
of handling discretized attribute values. The Fuzzy-Rough
set-based Feature Selection (FRFS) is a new approach that
extends data reduction in RST theory for crisp and real-
value attributes [23]. The new Fuzzy-Rough set-based
Feature Selection (FRFS2) algorithm [23],[24] that is based
on the filter approach is used in this paper.

The FRFS2 algorithm does not require any user-defined
parameters.

E. MIRSR algorithm

The Mutual Information-based Rough Set Reduction
(MIRSR) that is based on the wrapper approach for the
Rough set-based Neuro-Fuzzy System (RNFS), employs the
MI to select attributes with high relevance and the concept
of knowledge reduction in rough set theory to select
attributes with low redundancy [20].

V. CLASSIFICATION ALGORITHMS

A classifier is one that estimates the class label ��� from
the trained model given a data sample X={X1,X2,…,Xd} with
d features where Y is the true class label. The trained model
is constructed from training data that comprises n samples
{X1,X2,…Xn} with respective class labels {Y1,Y2,…Yn}.
The following classifiers are used in this paper:

A. NBPW algorithm

The Naïve Bayesian Parzen Window (NBPW) classifier
estimates p(X|�) and P(�) from training data samples and
predicts the class � with the highest posterior probability
p(�|X) using Bayes rule

� � � � � �
� �

|
|

p P
p

p

� �
� �

X
X

X
, (12)

where p(�|X) is the conditional probability of class � given
the data sample X; p(X|�) is the conditional probability of X
given class �; P(�) is the prior probability of class �; and
p(X) is

� � � � � �| .p p P
�

� �
��

� �X X (13)

The computation of p(�|X) is rendered feasible by a
naïve assumption that all the features X1,X2,…,Xd are
conditionally independent given class � in

� � � �
1

| |
d

i
i

p p X� �
�

��X . (14)

The NBPW classifier employs Parzen Window to
estimate the conditional probability p(Xi|�) in

� � � �,

1
ˆ | ,i i i j

j I

p X X X h
n

��

� �
�

� �� , (15)

where �=1,…,N�; n� is the number of data samples
belonging to class �; I� is the set of indices of the data
samples belonging to class �; and � is a smoothing kernel
function with a smoothing parameter h. The NBPW
classifier employs the univariate Gaussian kernel given by

� �
2

221
,

2

x

hx h e�
 

� 	
�
 �
 �
� 
� , (16)

and normal optimal smoothing strategy [25] given by
1

54

3
opth

n
!� 	� 
 �

� 

, (17)

where ! denotes the standard deviation of the distribution.
The classification rule of the NBPW classifier is given

by

� �arg max |p
�

� �
��

� X . (18)

B. FLD algorithm

The Linear Discriminant classification rule is given by
k b

k b
�

"� #$
% "& �'

W X

W X
(19)

where class k�� is discriminated against the rest; W is an
adjustable weight vector or projection vector for class k; "
denotes transpose operator; and b is a bias. This
classification rule maps multi-dimensional data to one-
dimensional using a linear function.

The Fisher Linear Discriminant (FLD) [26] is a linear
discriminant that maximizes the ratio of between-class
scatter to within-class scatter given by

� �J
"

�
"

B

W

W S W
W

W S W
(20)

where SB is the between class scatter matrix; and SW is the
within class scatter matrix.

C. SVM algorithm

The Support Vector Machine (SVM) [27] is a linear
discriminant that maximizes the separation between two
classes based on the assumption that it improves the
classifier’s generalization capability. This is achieved by
minimizing the cost function

� � 21

2
J �W W , (21)

subject to the constraint
� � 1 1..i iY b i n" � � # � �W X , (22)

where X1,X2,…Xn are the training data, and b is a bias.
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The SVM employs the linear discriminant classification
rule given in equation (19). The SVM implementation in the
Matlab Bioinformatics toolbox is used in this paper.

D. CART algorithm

Decision tree is a classifier which uses symbolic tree-
like representations of finite sets of if-then-else questions
that are natural, intuitive and interpretable [26]. The
Classification And Regression Tree (CART) [28]
implementation in the Matlab Statistics toolbox is used in
this paper.

E. k-NN algorithm

The k-nearest neighbor (k-NN) [29] is a classifier that
assigns the class label of a new data based on the class with
the most occurrences in a set of k nearest training data points
usually computed using a distance measure such as the
Euclidean distance. The k-nearest neighbor implementation
in the Matlab Bioinformatics toolbox with k=3 is used in this
paper.

F. RNFS and DENFIS algorithms

Neuro-Fuzzy Systems are hybrid intelligent systems
that synergize the human-like reasoning style of fuzzy
systems with the learning and connectionist structure of
neural networks. Neuro-Fuzzy Systems can be classified
into linguistic or precise model [30]. The linguistic Neuro-
Fuzzy System used in this paper is the Rough set-based
Neuro-Fuzzy System (RNFS) [20]. RNFS is a novel hybrid
intelligent system that synergizes the concept of knowledge
reduction in rough set theory with neuro-fuzzy systems [20].
The precise NFS used in this paper is the Dynamic Evolving
Neural-Fuzzy Inference System (DENFIS) [31].

VI. EXPERIMENTAL RESULTS

The “No Free Lunch” theorem states that there is no general
superiority of any approach over the others in pattern
classification; and if one approach seems to outperform
another in a particular situation, it is a consequence of its fit
to the particular pattern recognition problem [26]. Therefore,
this section assesses the performance of combining the
various feature selection algorithms described in section IV
and classification algorithms described in section V for use
with the FBCSP in motor imagery-based BCI. Filter-based
feature selection algorithms, namely, MIBIF, MIFS and
FRFS2, work with any classification algorithms. However,
wrapper-based feature selection algorithms, namely,
MINBPW and MIRSR work only with the RNFS and
NBPW classification algorithms respectively. Hence,
MINBPW and MIRSR are not combined with other
classification algorithms. The proposed FBCSP approach is
applied to the publicly available BCI competition III dataset
IVa [32],[33] and data collected from healthy subjects and
unilaterally paralyzed stroke patients. The FBCSP employs a
filter bank that covers 4-40Hz, which comprises 9 bandpass
filters that covers 4Hz each; and the CSP algorithm with
m=2.

A. Publicly available BCI Competition III dataset IVa

The BCI Competition III dataset IVa [33] is collected
from 5 subjects (labeled ‘aa’, ‘al’, ‘av’, ‘aw’, ‘ay’) who
performed right hand and right foot imagination [32]. The
data for each subject comprises 280 trials of EEG
measurements from 118 electrodes. The data is extracted
from selected electrodes, starting from 0.5s to 2.5s after the
visual cue. The time segment and electrode selections are
consistent with the experiment performed in [6].

Fig. 3 presents the experimental results of unbiased
10�10-fold cross-validations performed using FBCSP with
various feature selection and classification algorithms
described in section IV and V respectively. The results in
Fig. 3 shows that among the classification algorithms,
NBPW, FLD and SVM yield superior test accuracies
compared against the CART, k-NN, RNFS and DENFIS.
The results also show that among the feature selection
algorithms used with NBPW, the MIBIF that selects 4 pairs
of CSP features yields superior test accuracy. Specifically,
the FBCSP with MIBIF4 and NBPW yields a test accuracy
of 90.3(0.7%; whereas FLD yields 89.9(0.9%, and SVM
yields 90.0(0.8%.

Fig. 4 shows the results of unbiased 10�10-fold cross-
validations performed using the FBCSP with the NBPW
classification algorithm and the MINBPW wrapper-based
feature selection algorithm (labeled as FBCSPw), as well as
the MIBIF filter-based feature selection algorithm that
selects 4 pairs of CSP features (labeled as FBCSPf). The
FBCSPw and FBCSPf have been shown to yield superior test
accuracies for wrapper and filter-based approaches
respectively compared to the rest in Fig. 3. Hence, only
FBCSPw and FBCSPf are presented in this experiment. The
SBCSP has been shown to yield superior results on this
dataset compared against existing approaches such as CSSP
and CSSSP in [6]. Therefore, this experiment compares only
with CSP and SBCSP. In the experiment, both FBCSP and
SBCSP employed 9 bandpass filters and used the same
NBPW classifier. This similar configuration is used to avoid
ad-hoc tuning of the classifiers in order to make a fair
comparison between FBCSP and SBCSP. CSP is manually
configured with a broad bandpass filter of 8-30Hz [12]. The
results in Fig. 4 show that the FBCSPf yields superior
averaged test accuracy of 90.3(0.7%, whereas FBCSPw

yields 89.2(1.1%, SBCSP yields 86.3(1.1%, and CSP
yields 86.6(0.7%. Hence, the results show that both the
FBCSPf and FBCSPw yield statistically superior results than
SBCSP and CSP.

Fig. 5 shows the most significant CSP using the
frequency range that is autonomously selected in FBCSPf.

The results show that the centre of the vertex and the left
hemisphere discriminates the right foot action and the right
hand action respectively for subjects ‘aa’, ‘al’, ‘aw’, and
‘ay’. These results verify the neurophysiological plausibility
of the CSP projection matrix computed for these subjects.
However, the result for subject ‘av’ does not show such
patterns. This is a plausible reason for the relatively inferior
test accuracy obtained for subject ‘av’.
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Fig. 3. Experimental results on the test accuracies of 10�10-fold cross-validations performed using FBCSP with various feature selection and
classification algorithms on publicly available BCI Competition III dataset IVa
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Fig. 4. Experimental results on the test accuracies of 10�10-fold cross-validations performed using CSP, SBCSP, FBCSPw and FBCSPf on BCI
Competition dataset IVa
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Fig. 7. Experimental results on the test accuracies of 10�10-fold cross-validations performed using CSP, SBCSP, FBCSPw and FBCSPf on data
collected from healthy subjects and unilaterally paralyzed stroke patients

B. Finger tapping and motor-imagery data collected from
healthy subjects and unilaterally paralyzed stroke patients

This dataset is collected using Neuroscan NuAmps from
2 healthy subjects (labeled ‘h1~’, ‘h2~’) and 7 unilaterally
paralyzed stroke patients (labeled ‘p1~’, ‘p2~’). The data is
collected with approval from the Ethics Approval Board.
The healthy subjects performed left and right hand finger
tapping (labeled ‘~tt) and motor imagery (labeled ‘~mm’).
The unilaterally paralyzed stroke patients performed motor
imagination of their disabled arm and finger tapping using
their unaffected arm. The data for each subject comprises
160 trials of EEG measurements from 21 electrodes (F7, F3,
Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, C3, Cz, C4, TP7,
CP3, CPz, CP4, TP8, P3, Pz, P4) starting from 0.5s to 2.5s
after the visual cue.

Fig. 6 presents the experimental results of unbiased
10�10-fold cross-validations performed using FBCSP with
various feature selection and classification algorithms
described in section IV and V respectively. The results in

Fig. 6 again shows that NBPW, FLD and SVM yield
superior test accuracies than CART, k-NN, RNFS and
DENFIS. The results also show that the FBCSP with
MIBIF4 and NBPW as well as SVM yield a superior test
accuracy of 81.1(2.2%, whereas FLD yields 80.9(2.1%.

Fig. 7 shows the results of unbiased 10�10-fold cross-
validations performed using the FBCSP with NBPW and the
wrapper-based MINBPW (labeled as FBCSPw), as well as
the filter-based MIBIF4 (labeled as FBCSPf). The results are
again compared against CSP and SBCSP. In the experiment,
both FBCSP and SBCSP employed 9 bandpass filter bands
and used the same NBPW classifier. However, CSP is
manually configured with subject-specific operational
frequency ranges. The results in Fig. 7 shows that the
FBCSPf yields superior averaged test accuracy of
81.1(2.2%, whereas FBCSPw yields 77.7(3.0%, SBCSP
yields 75.3(2.7%, and CSP yields 73.3(2.0%. Hence, the
results show that both the FBCSPf and FBCSPw yield
statistically superior results than SBCSP and CSP.
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VII. CONCLUSIONS

This paper proposed a novel machine learning approach
called Filter Bank Common Spatial Pattern (FBCSP) for
processing EEG measurements in motor imagery-based BCI.
FBCSP addresses the problem of selecting an appropriate
operational frequency band for extracting discriminating
CSP features. FBCSP employs a feature selection algorithm
to select discriminative CSP features from a bank of
multiple bandpass filters and spatial filters, and a
classification algorithm to classify the selected features.
FBCSP is capable of learning subject-specific patterns from
the high-dimensional EEG measurements without operator
intervention as well as yielding relatively high classification
accuracies. Since any feature selection and classification
algorithms from the machine learning and computational
intelligence literature can be employed, FBCSP is more
generalized than existing approaches such as the Sub-band
Common Spatial Pattern (SBCSP).

Experimental results showed that the proposed FBCSP
yields superior classification accuracy compared against
SBCSP and CSP with manually selected operational
frequency bands. Based on the results, the Mutual
Information Best Individual Feature (MIBIF) selection
algorithm that selects 4 pairs of CSP features; and the Naïve
Bayes Parzen Window (NBPW), Fisher Linear Discriminant
(FLD) or Support Vector Machines (SVM) classification
algorithms are recommended for use with FBCSP in motor
imagery-based BCIs..

ACKNOWLEDGMENT

The authors would like to thank Beng Ti Ang from
National Neuroscience Institute, Karen Chua and
Christopher Kuah from Tan Tock Seng Hospital, Wang
Chuanchu and Phua Kok Soon from Institute for Infocomm
Research A*STAR for their support in the data collection
from the stroke patients.

REFERENCES

[1] B. Rebsamen, E. Burdet, C. Guan, H. Zhang, C. L. Teo, Q. Zeng, C.
Laugier, and M. H. Ang Jr., "Controlling a Wheelchair Indoors Using
Thought," IEEE Intelligent Systems, vol. 22, no. 2, pp. 18-24, 2007.

[2] N. Birbaumer, "Brain-computer-interface research: Coming of age,"
Clin. Neurophysiol., vol. 117, no. 3, pp. 479-483, 2006.

[3] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T.
M. Vaughan, "Brain-computer interfaces for communication and
control," Clin. Neurophysiol., vol. 113, no. 6, pp. 767-791, 2002.

[4] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Muller, and G. Curio,
"The non-invasive Berlin Brain-Computer Interface: Fast acquisition of
effective performance in untrained subjects," NeuroImage, vol. 37, no.
2, pp. 539-550, 2007.

[5] G. Pfurtscheller and C. Neuper, "Motor imagery and direct brain-
computer communication," Proceedings of the IEEE, vol. 89, no. 7, pp.
1123-1134, 2001.

[6] Q. Novi, C. Guan, T. H. Dat, and P. Xue, "Sub-band Common Spatial
Pattern (SBCSP) for Brain-Computer Interface," 3rd International
IEEE/EMBS Conference on Neural Engineering, 2007. CNE '07, pp.
204-207, 2007.

[7] G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K.-
R. Muller, "Combined Optimization of Spatial and Temporal Filters for

Improving Brain-Computer Interfacing," IEEE Trans. Biomed. Eng.,
vol. 53, no. 11, pp. 2274-2281, 2006.

[8] S. Lemm, B. Blankertz, G. Curio, and K.-R. Muller, "Spatio-Spectral
Filters for Improving the Classification of Single Trial EEG," IEEE
Trans. Biomed. Eng., vol. 52, no. 9, pp. 1541-1548, 2005.

[9] G. Pfurtscheller and A. Aranibar, "Evaluation of event-related
desynchronization (ERD) preceding and following voluntary self-paced
movement," Electroencephalography and Clinical Neurophysiology,
vol. 46, no. 2, pp. 138-146, 1979.

[10] A. Schnitzler, S. Salenius, R. Salmelin, V. Jousmaki, and R. Hari,
"Involvement of Primary Motor Cortex in Motor Imagery: A
Neuromagnetic Study," NeuroImage, vol. 6, no. 3, pp. 201-208, 1997.

[11] G. Pfurtscheller and F. H. Lopes da Silva, "Event-related EEG/MEG
synchronization and desynchronization: basic principles," Clin.
Neurophysiol., vol. 110, no. 11, pp. 1842-1857, 1999.

[12] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, "Optimal spatial
filtering of single trial EEG during imagined hand movement," IEEE
Trans. Rehabil. Eng., vol. 8, no. 4, pp. 441-446, 2000.

[13] J. Muller-Gerking , G. Pfurtscheller, and H. Flyvbjerg, "Designing
optimal spatial filters for single-trial EEG classification in a movement
task," Clin. Neurophysiol., vol. 110, no. 5, pp. 787-798, 1999.

[14] K. Fukunaga. Introduction to Statistical Pattern Recognition, 2nd ed.
New York:Academic Press, 1990.

[15] W. Penfield and T. Rasmussen. The cerebral cortex of man: a clinical
study of localization of function. New York :Macmillan, 1950.

[16] E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Essentials of neural
science and behavior. Norwalk, CT:Appleton & Lange, 1995.

[17] R. Kohavi and G. H. John, "Wrappers for feature subset selection,"
Artificial Intelligence, vol. 97, no. 1-2, pp. 273-324, 1997.

[18] R. Battiti, "Using mutual information for selecting features in
supervised neural net learning," IEEE Trans. Neural Networks, vol. 5,
no. 4, pp. 537-550, 1994.

[19] T. M. Cover and J. A. Thomas. Elements of Information Theory, 2nd
ed. New York:Wiley, 2006.

[20] K. K. Ang and C. Quek, "Rough Set-based Neuro-Fuzzy System,"
Proceedings of the IEEE International Joint Conference on Neural
Networks (IJCNN '06), pp. 742-749, 2006.

[21] Z. Pawlak. Rough Sets: Theoretical Aspects of Reasoning about Data.
Dordrecht, Boston:Kluwer Academic Publishers, 1991.

[22] R. W. Swiniarski and A. Skowron, "Rough set methods in feature
selection and recognition," Patt. Rec. Lett., vol. 24, no. 6, pp. 833-849,
2003.

[23] R. Jensen and Q. Shen, "Semantics-preserving dimensionality
reduction: rough and fuzzy-rough-based approaches," IEEE Trans.
Know. Data Eng., vol. 16, no. 12, pp. 1457-1471, 2004.

[24] R. Jensen and Q. Shen, "New Approaches to Fuzzy-Rough Feature
Selection," IEEE Trans. Fuzzy Systems, pp. in press 2007.

[25] A. W. Bowman and A. Azzalini. Applied Smoothing Techniques for
Data Analysis: The Kernel Approach with S-Plus Illustrations. New
York:Oxford University Press, 1997.

[26] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification, 2nd ed.
New York:John Wiley, 2001.

[27] V. N. Vapnik. Statistical learning theory. New York:Wiley, 1998.
[28] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.

Classification and regression trees. Belmont, CA:Wadsworth
International Group, 1984.

[29] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE
Trans. Information Theory, vol. 13, no. 1, pp. 21-27, 1967.

[30] J. Casillas, O. Cordón, F. Herrera, and L. Magdalena. Interpretability
Issues in Fuzzy Modeling . Berlin:Springer-Verlag, 2003.

[31] N. K. Kasabov and Q. Song, "DENFIS: dynamic evolving neural-fuzzy
inference system and its application for time-series prediction," IEEE
Trans. Fuzzy Systems, vol. 10, no. 2, pp. 144-154, 2002.

[32] G. Dornhege, B. Blankertz, G. Curio, and K.-R. Muller, "Boosting bit
rates in noninvasive EEG single-trial classifications by feature
combination and multiclass paradigms," IEEE Trans. Biomed. Eng.,
vol. 51, no. 6, pp. 993-1002, 2004.

[33] B. Blankertz, "BCI Competition III", Fraunhofer FIRST.IDA,
http://ida.first.fraunhofer.de/projects/bci/competition_iii, 2005.

2398 2008 International Joint Conference on Neural Networks (IJCNN 2008)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


