
  

  

Abstract—Brain Computer Interface (BCI) provides an 
alternative communication and control method for people with 
severe motor disabilities.  Motor imagery patterns are widely used 
in Electroencephalogram (EEG) based BCIs. These motor imagery 
activities are associated with variation in alpha and beta band 
power of EEG signals called Event Related 
Desynchronization/synchronization (ERD/ERS). The dominant 
frequency bands are subject-specific and therefore performance of 
motor imagery based BCIs are sensitive to both temporal filtering 
and spatial filtering. As the optimum filter is strongly subject-
dependent, we propose a method that selects the subject-specific 
discriminative frequency components using time-frequency plots of 
Fisher ratio of two-class motor imagery patterns. We also propose a 
low complexity adaptive Finite Impulse Response (FIR) filter bank 
system based on coefficient decimation technique which can realize 
the subject-specific bandpass filters adaptively depending on the 
information of Fisher ratio map. Features are extracted only from 
the selected frequency components. The proposed adaptive filter 
bank based system offers average classification accuracy of about 
90%, which is slightly better than the existing fixed filter bank 
system. 

I. INTRODUCTION 
EG is widely used in detecting brain activities by 
recording electric signals from the scalp. Intentions can 
then be recognized by analyzing the neurological 

phenomenon from the EEG signals. It gives rise to a new 
communication and control channel, dubbed brain computer 
interface (BCI), which does not depend on the brain’s 
normal output pathway of nerves and muscles. BCI can be 
used as a communication tool for people with severe 
neuromuscular disabilities, such as amyotrophic lateral 
sclerosis, brain-stem stroke, spinal code injury, etc., to 
control external devices such as a computer, wheelchair, 
neuroprothesis etc. EEG based BCIs use various 
neurological phenomena, such as visually evoked potentials, 
slow cortical potentials, P300 potentials, mu and/or beta 
rhythms and event related (de-) synchronization (ERD/ERS), 
etc [1-4]. 
Motor imagery is one of the effective methodologies 
employed in EEG-based BCIs [5]. Preparation for actual 
movement or imagination of a movement is accompanied by 
a rhythmic power decrease or increase in counter-lateral 
primary sensorimotor areas, which are called event related 
desynchronization (ERD) and event related synchronization 
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(ERS) respectively [6]. The predominant frequency bands 
are very much subject-dependent, which will be the main 
concern of this paper.  
In order to detect motor imagery intention, the common 
spatial pattern (CSP) algorithm was found to be effective in 
calculating subject-specific discriminative spatial filters for 
detecting ERD/ERS effects. Given two classes in a high 
dimensional feature space, the CSP algorithm finds 
directions (spatial filters) that maximize the variance of one 
class and minimize the variance of the other one 
simultaneously [8]. Traditionally, the frequency bands at 
which the CSP works the best were either manually tuned or 
set to a broad band filter [9].  In order to automatically 
choose the optimal frequency band, [10] proposed Common 
Spatio Spectral Pattern or CSSP algorithm. CSSP tried to 
optimize the frequency filters for each channel together with 
spatial-filters. Further, to make it more flexible in frequency 
filtering, Common Sparse Spectral Spatial Pattern (CSSSP) 
algorithm [9] was proposed to optimize an arbitrary finite 
impulse response (FIR) filter within the CSP analysis. Sub-
band CSP (SBCSP) [11] was then proposed to filter the 
multi-channel EEG signals using Chebyshev type 2 infinite 
impulse response (IIR) filter bank. The score values 
computed from the SBCSP features were used to determine 
the classification capabilities of each frequency bands. The 
recent study in [12], proposed Filter Bank Common Spatial 
Pattern (FBCSP), which deployed a fixed filter bank of 9 
equal bandwidth Chebyshev type 2 IIR filters followed by 
feature selection and classification algorithms. 
 In this paper, we further the work at [12] to propose a 
method to determine the subject-specific discriminative 
frequency bands adaptively based on time-frequency map of 
Fisher ratio between two-class multi channel EEG signals,  
and implement the filters with reconfigurable bandpass 
Finite Impulse Response (FIR) filters based on coefficient 
decimation technique. The proposed method is applied to 
publicly available BCI competition III dataset IVa, which 
were collected from a two-class motor imagery BCI task 
with five subjects named ‘aa’, ‘al’, ‘av’, ‘aw’ and ‘ay’ who 
performed right hand and left foot imagination. The data for 
each subject comprises 280 trials of EEG measurements 
from 118 electrodes. The data are sampled at 100Hz. 
The paper is organized as follows: section II explains the 
proposed method, section III discusses the results obtained 
and section IV has our conclusions. 

II. PROPOSED METHOD 
The proposed adaptive filter bank based system for two-

class motor imagery pattern has five stages as illustrated in 
Figure 1. These stages comprise the calculation of time-
frequency Fisher ratio map, multi-band filtering using 
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reconfigurable FIR filters, calculation of features using CSP 
algorithm, feature selection, and classification. 
 In order to find out the predominant frequency bands from 
EEG, Fisher ratios are calculated across time-frequency 
domain. After selecting the informative frequency 
components using Fisher ratio, we employ the desired 
bandpass filters realized using coefficient decimation based 
reconfigurable filter bank. Thus the multichannel EEG 
signals go through variable bandwidth bandpass filtering and 
spatial filtering. Each filter of EEG is followed by a number 
of spatial filters to yield CSP features that are specific to 
each frequency range of that bandpass filter. The next stage 
is feature selection which finds out the most discriminative 
pairs of CSP features from all the CSP features out of all the 
filter bands. The final stage is a Support Vector Machine 
(SVM) classifier to recognize the class of the motor 
imagery. 
 

 
             Figure 1. Proposed Adaptive Filter Bank Based BCI System. 

A. Time-frequency Fisher Ratio Map 
Given each trial of EEG, we first calculate the power 
spectral density (PSD) in shifting time windows 
(width=400ms, overlap=200ms) using Short Term Fourier 
Transform (STFT) on each channel and average the PSD 
over the channels from sensorimotor cortices. So each trial is 
associated with a discrete time-frequency density 
map ),( tfI . Fisher ratio, Fr, is then calculated to measure 
the discriminative power of each time-frequency point 
across trials and classes.  
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where m is the total average, mk is the average for class k,  (k 
= 1, 2), nk  denotes the number of trials for class k, SW is the 
within class variance and SB is between class variance. The 
time-frequency Fisher ratio is used to indicate informative 
frequency components, where high values represent more 
discriminative time-frequency components.  

 

  
 
 
 
Figure 2. Time-frequency Fisher ratio plots for subjects named ‘aa’ and ‘al’ 
in BCI competition III dataset IV a.                        
 
After getting the time-frequency Fisher ratio map, we will 
search for the predominant frequency band by a shifting 
window along the frequency axis. To start, a window slides 
from 4Hz to 40Hz along the frequency axis of Fisher ratio 
map, and we calculate the total value of Fisher ratio within 
this window over the whole time course as 
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Where fi is the centre frequency of the window, BWj is the 
bandwidth, and T is the duration of the trials. BWj varies 
from 3-9Hz, Then, for each band width, we select the band 
with centre frequency fj corresponding to  

{ }arg max ( , )j i ji
f f BWα=   

This way, we select a frequency band for each bandwidth, 
together with their maximum total values α. We then need to 
decide from all the frequency bands which one will be used 
for filter design. To do so, we first find out the maximum α 
among all bandwidths for a particular frequency band, 
αmax(f,BW), and then calculate the relative change of each α  
towards the maximum value as 
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We discard all those bands with η  below certain value (eg, 
5% in our case). Finally we find the band with largest 
bandwidth, which is denoted as Band-1. In the same way, we 
can find out other frequency bands with the constraints that 
only some overlap is allowed between any two bands (eg, 1 
Hz in our case). Band searching continues until a maximum 
number of bands (eg, 9 in our case), or with the α value 
lower than certain percentage of that of Band 1 (eg, 12 % in 
our case). The shift of the window along frequency axis can 
vary from 0.1 to 1Hz. 

B. Adaptive Filter Bank system using Coefficient 
Decimation (CD) Approach 

From the bandpass selected above, we can then design FIR 
filters. Here, we employ a reconfigurable filter bank based 
on Coefficient Decimation (CD) approach [7] for adaptive 
frequency filtering. Linear phase FIR filters are widely 
employed in many filtering applications because of the 
advantages such as guaranteed stability and low coefficient 
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sensitivity. But the main problem of FIR filters lies in its 
high implementation complexity due to the requirement of 
higher order compared to its IIR counterpart. A new 
approach to implement computationally efficient 
reconfigurable FIR filters was presented in [7]. If the 
coefficients of an FIR filter (termed modal filter) are 
decimated by M, i.e., if every Mth coefficient of the filter is 
kept unchanged and remaining coefficients are changed to 
zeros, a multi-band frequency response will be obtained. 
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Figure 3(a). Frequency response of modal filter. 
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Figure 3(b). Frequency response of modal filter with M=8. 
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Figure 3(c). Frequency response of masking filter. 
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Figure 3(d). Frequency response of Band-1 filter for subject ‘aa’. 
  
Let h(n) be the original set of filter coefficients. If we 
replace all the coefficients other than every Mth by zeros 
  )()()(' ncnhnh M=                                                       (4) 
where 1)( =ncM for n=mM, m=0,1, 2 etc. 
                         = 0 otherwise. 
The Fourier transform of modified coefficients )(' nh is 
given by [7]: 
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It can be noted from equation (5) that, the frequency 
response is scaled by M and replicas of frequency spectrum 
are introduced at integer multiples of 2π/M, where the centre 

frequencies are at 2πk/M and k is an integer ranging from 0 
to M-1.  
If these multi-band frequency responses are selectively 
masked using inherently low complex wide transition-band 
masking filters, different low pass, high pass, bandpass, and 
band stop filters can be obtained. We employ the CD-based 
reconfigurable filter bank in proposed feature extraction 
method on account of its absolute control over the location 
of centre frequencies of pass bands. 
For example, for one of the subjects ‘aa’ in the dataset we 
used, the informative frequency bands obtained from time-
frequency Fisher ratio plot are 11-15Hz (Band-1), 6-12Hz 
(Band-2) and 23-28Hz (Band-3). Below are the steps in the 
design of Band-1 (11-15 Hz) for this subject. 
Step 1: The passband and stopband specifications of modal 
filter are chosen as 2 Hz and 3 Hz respectively. Then modal 
filter response is shown in Fig. 3 (a). 
Step 2: If the modal filter is decimated by M=8, the 
frequency response as shown in Fig. 3(b) is obtained. The 
centre frequency of Band-1 is 13 Hz for subject ‘aa’  and 
this can be obtained by choosing k=1 as given in (5).  
Step 3: A masking filter with frequency response as shown 
in Fig. 3(c) is used to isolate Band-1 from the decimated 
frequency response of modal filter. 
The final frequency response of Band-1 after masking is 
shown in Fig. 3(d). Note that the stopband attenuation of the 
final filter is slightly inferior to that of the modal filter, but 
this deterioration is taken into consideration by 
overdesigning the modal filter such that the final filter’s stop 
band response will satisfy the desired response. Thus for 
each subject, the passband edges of ‘n’ bandpass filters are 
obtained from the Fisher ratio plots and then the modal filter 
coefficients are adaptively adjusted (k and M values are 
varied) according to the centre frequency and bandwidth 
requirements using coefficient decimation technique.   

C. Common Spatial Patterns (CSP) 
After spectral filtering using the adaptive filter bank in B, 
EEG signal from each filter band will be applied with a CSP 
transformation to obtain features for classification. The goal 
of the CSP algorithm is to design spatial filters whose 
variances are optimal for the discrimination of two-classes 
of EEG measurements. CSP algorithm is based on the 
simultaneous diagonalization of two covariance matrices [8]. 
The spatially filtered signal Z of a single trial EEG E is 
given as 
                              WEZ =                                                  (6) 
where E is an N×T matrix representing the raw EEG 
measurement data of a single trial; N is the number of 
channels; T is the number of measurement samples per 
channel and W is the CSP projection matrix. The rows of W 
are the stationary spatial filters and the columns of W-1

 are 
the common spatial patterns. 
The spatial filtered signal Z given in (4) maximizes the 
differences in the variance of the two-classes of EEG 
measurements. However, the variances of only a small 
number m of the spatial filtered signal are generally used as 
features for classification [8]. The m first and last rows of Z, 
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i.e. Zp, p∈{1,..., 2m} form the feature vector Fp given in (7) 
as inputs to a classifier.                                                                      
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D. Feature Selection and classification Algorithms 
As the features from the filter and CSP are highly 
dimensional, feature selection is deployed to reduce the 
number of features for classification. It helps to improve the 
robustness of the classifier. Among the wrapper and filter 
based approaches of feature selection algorithms available in 
literature, we used Mutual Information (MI)-based best 
individual feature selection in filter approach as in [12] i.e. 
from an initial set F with d features, find the subset S�F 
with ‘FS’ pairs of  features that maximizes Mutual 
Information. This algorithm requires a user defined 
parameter to select the number of best features (‘FS’). Then 
the selected features are given to the Support Vector 
Machine (SVM) classification algorithm which is a linear 
discriminant that maximizes the separation between two-
classes based on the assumption that it improves the 
classifier’s generalization capability.  

III. RESULTS AND DISCUSSIONS 
We test our method on BCI Competition III dataset IVa, 
which comprises of 280 trials of EEG measurements from 
118 electrodes for each subject. The subject-specific 
frequency bands are determined using time-frequency Fisher 
ratio for that subjects and the EEG is processed with the 
proposed reconfigurable filter bank based on the frequency 
bands selected. We take 2.5s to 4.5s (after the visual cue) of 
the filtered EEG data to calculate CSP features. Then the 
feature selection algorithm selects the best CSP features 
(based on mutual information criterion) and sends them to an 
SVM classifier. We also compared our method with FBCSP 
[12]. FBCSP algorithm deployed 9 fixed filters. The 
proposed AFBCSP method deployed subject-specific 
frequency bands, and we use the same feature selection and 
classifier as in [12]. Average accuracy results of five 
subjects with 10x10 fold cross-validations for FBCSP and 
AFBCSP are shown in Table I. Experimental results and 
statistical analysis of t-test, show that accuracy of proposed 
method is similar to FBCSP, however, AFBCSP usually 
ends up with much less number effective bands (usually 3) 
and the adaptive filter gives rise the potential for on-line 
adaptation. Also the filters are designed by less complex CD 
technique. Thus AFBCSP yields less computational 
complexity in terms of filtering and subsequent CSP 
formation than FBCSP which employed 9 bandpass filters. 
           Table I. Average Test accuracy over five subjects  

Value of feature 
selection 

parameter(‘FS’) 

Proposed 
AFB CSP (%) 

 
FBCSP (%)[12] 

1 89.1±1.43 88.48±0.71 
2 90.0±1.36 89.25±0.90 
3 90.2±1.32 89.88±0.73 
4 90.3±1.35 90.0±0.82 

IV. CONCLUSION 
We proposed an adaptive filtering method (AFBCSP) for 
multiple filter band CSP classification of motor imagery 
EEG signal. AFBCSP determines the predominant frequency 
bands for each subject using the information from time-
frequency Fisher ratio map. The filter design is based on 
coefficient decimation technique, which was originally 
suggested for implementing reconfigurable filters at a lower 
complexity where the centre frequency and bandwidth of the 
filters can be easily varied. Experimental results show that 
AFBCSP gave good results comparable to the state of the art 
which uses more number of filters. The adaptive nature of 
the AFB system which is obtained at a lower complexity is 
promising. Furthermore, it can be potentially used for online 
adaptation. The Hardware implementation of the proposed 
approach is possible at a lower cost which will be looked 
upon in near future.  
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