
Augmenting Cognitive Processes in Robot-Assisted Motor
Rehabilitation

Keng Peng Tee, Cuntai Guan, Kai Keng Ang, Kok Soon Phua, Chuanchu Wang, and Haihong Zhang
Institute for Infocomm Research

Agency for Science, Research and Technology (A*STAR)
Singapore 138632

kptee@i2r.a-star.edu.sg

Abstract— Cognitive processes, such as motor intention, at-
tention, and higher level motivational states are important
factors that govern motor performance and learning. Current
robot-assisted rehabilitative programs focus only on the physical
aspects of training. In this paper, we propose a framework for
motor rehabilitation based on the augmentation of cognitive
channels of patient-robot interactions and using it to deliver
a more optimal therapy. By examining the cognitive processes
involved in motor control and adaptation, it is argued that
optimal therapy needs to be considered in the context of a
complete motor scheme consisting not only of sensorimotor
signals, but also their interactions with cognitive operations,
such as motor planning, attention, and motivation, which
mediate motor learning. We outline a few BCI-based modules
for the detection and monitoring of relevant cognitive processes,
which provide inputs for the robot to automatically modulate
parameters of the rehabilitation protocol. Preliminary inves-
tigations on a BCI module for detection of motor intention,
performed on a small group of stroke patients, show feasible
accuracies.

I. INTRODUCTION

Recent statistics identified stroke as a leading cause of
death in the world. Yet, the consequences of stroke spread
beyond patient mortality. Of those who survive a stroke, at
least 30% fail to make a complete recovery and will experi-
ence disabilities relating to movement, speech, concentration,
and cognition, and a further 20% will continue to require
long-term care for activities of daily living [1].

The principles guiding post-stroke motor rehabilitation are
mainly founded on the mechanisms of cortical reorganiza-
tion, or neuro-plasticity, which refers to experience-mediated
functional reorganization of the brain. Another hypothesis is
that the functional roles of the affected tissue are adopted
by parallel brain regions in the unaffected hemisphere, facil-
itated by descending brain fibers from one brain hemisphere
that do not cross over to the contralateral body hemisphere
[2]. Evidence from animal studies suggest that the envi-
ronment has an effect on the post-stroke reorganization of
undamaged cortical tissues in primates [3], alluding to the
possible role of exercise in the motor restoration of the
paretic limb.
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Traditional physical and occupational therapy for stroke
patients, such as the Bobath approach and the Motor Re-
learning Program, typically involve exercises that attempt
to overcome motor deficits and improve motor patterns,
with the help of therapists [4]. More recently, promising
results has been demonstrated in Constraint-induced Move-
ment Therapy, which forces the use of the affected side by
restraining the unaffected side [5].

Although the above rehabilitation methods are well-
established in practice, and well-supported by evidence of
improved outcome, they are labor intensive and expensive.
Furthermore, manually assisted movement training lacks
repeatability and objective measures of patient performance
and therapy progress. With the advent of robotic technology
and new insights in the neuroscience of human motor adap-
tation, we are witnessing a paradigm shift to robot-assisted
motor rehabilitation [6]. Rehabilitation programs that incor-
porate robotic and information technology can ameliorate the
increasing burden on manpower by automating parts of the
process that are repetitive and time-consuming. Additionally,
robots are able to provide consistent training in an efficient
manner, pervasive and accurate monitoring of the progress
of patients. Rich data on body kinematics and dynamics
can facilitate analysis on patient condition and shed light on
better ways to customize the therapy. Clinical studies have
reported significant improvements on rehabilitation outcome
based on clinical measures [7], [8].

Most of the current robotic rehabilitation approaches are
centered on physical therapy, and devote minimal emphasis
to cognitive factors that play a role in determining rehabil-
itation progress and outcome. For optimal therapy, motor
output cannot be considered in isolation. A complete motor
scheme consists of interactions between motor planning,
execution, sensory feedback, and attention, which in turn
mediate motor learning. On top of that, higher level cognitive
factors such as motivation and emotion are also determinants
of rehabilitation outcome. We propose a new approach of
robot-assisted motor rehabilitation which takes into account
cognitive processes that play key roles in motor control and
learning. State of the art brain-computer interface technology
is a fertile ground for research into ways of detection and
monitoring cognitive processes such as intention, attention
and emotion, and these provide a novel dimension towards
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Fig. 1. A complete motor scheme consists of interactions between motor
planning, execution, sensory feedback, and attention, which in turn mediate
motor learning.

the goal of optimizing motor therapy that can potentially
enlarge the group of patients who can benefit from robotic
rehabilitation.

II. MOTOR CONTROL, LEARNING, AND THE
COGNITIVE PROCESSES INVOLVED

Figure 1 provides a conceptual framework which illus-
trates the putative roles and relationships between motor
intention/planning, execution, and modulation of sensory
activities by attention during a complete motor scheme
for goal-directed reaching movements. First, localization of
target and limb takes place, where the Central Nervous
System (CNS) resolves the target-centered coordinates, limb-
centered coordinates and eye-centered coordinates into a
common frame of reference in order to determine the true
spatial relationship between the target and limb relevant to
the reaching task. This is followed by the computation of
the direction and extent of the error in limb location relative
to the target, which is key to the planning of movement
kinematics, that is, the specification of the path and speed
of movement. Based on the planned kinematics, the CNS
specifies the feedforward motor command, which constitute
the forces needed to be produced to move the limb against
its own inertia as well as any external forces, via an inverse
dynamics map [9].

With the planned movement dynamics, the motor circuits
residing at the spinal cord level then coordinate the temporal
aspects of muscle force generation needed to generate the
actual movement. During the movement, the error kinematics
of the limb relative to the target are monitored via visual and
proprioceptive pathways, with the help of forward models
that predict future limb states based on an efference of the
motor command [10]. Then, feedback control via reflexes
and intrinsic viscoelastic muscle properties takes place to
stabilize the limb against unexpected perturbations.

Motor learning involves the adaptation of the inverse
dynamics map which generates motor commands in response
to a novel motor task or interaction with the environ-
ment. Humans form appropriate internal models to overcome
external dynamics in both stable [11], [12] and unstable
interactions [13], [14], and recent results suggest that these

seemingly different strategies for learning can be unified
under a framework which concurrently minimizes neural
feedback, in the form of reflexes, and muscle activation [15].

Motor intention can be understood as a collection of cogni-
tive processes that initiates a goal-directed sequence of body
movements. In particular, it encompasses the localization
of target and limb, as well as the planning of movement
kinematics and dynamics. An important cognitive precursor
to any attempt to generate, or imagine, a movement in space
is visuo-spatial attention to limb and target positions. During
motor execution, attention to task related features of the
movement has an effect on motor performance [16], [17].
These may be kinematic features related to position error
and sensorimotor transformation, or dynamic ones related
to force production. Evidence from a neuroimaging study
[18] suggests that visual attention during movement modifies
brain activity in ways that are different from those occurring
for movement or visual attention alone.

The roles of attention in the learning of novel sensorimotor
transformation, and in the adaptation to novel force per-
turbations, have been investigated in several studies. When
cognitive load is imposed on a prism adaptation task, subjects
showed increased terminal pointing errors [19]. Furthermore,
it was found that divided attention impairs motor adaptation
to a significantly greater extent than motor control [16], [20],
and that attention is necessary to monitor movements and
evaluate errors when learning to perform a novel motor task
or in the presence of motor deficit [21].

In summary, intention and attention are indispensable to
the voluntary initiation of movements and have significant
effects on motor and learning performance. The implication
for post-stroke motor rehabilitation is that focus on only the
explicit behavioral aspects, i.e. limb displacements, while
ignoring the internal cognitive processes that underlie move-
ment generation and adaptation, may lead to suboptimal or
incomplete learning of motor scheme for unassisted activities
of daily living.

III. AUGMENTING COGNITIVE PROCESSES IN
MOTOR REHABILITATION

In current works on robotic rehabilitation, the robot pro-
vides assistive actions based solely on the motor output
variables such as limb velocity or electromyogram (EMG)
signals, but not the cognitive processes that drive and monitor
voluntary movements. The assumption is that the patient
is well motivated towards the therapy and fully utilizing
the neural mechanisms pertaining to motor intention and
attention. For typical robot-aided rehabilitation involving
reaching movements of the paretic limb, in the absence of
any motor output from the patient within a time limit, the
robot automatically moves the patient’s limb to the target and
back. In this case, it is difficult to judge objectively whether
the patient is cognitively involved in the process. Did the
patient generate a motor plan to reach the target even though
the movement was not initiated, or attend to sensory feedback
when the movement is passively performed with the help of



Fig. 2. BCI-based robotic rehabilitation system: Augmenting cognitive
processes such as intention, attention and emotion, provide a novel dimen-
sion towards the optimization of motor therapy.

the robot? Current approaches do not readily lend themselves
to addressing these pertinent questions.

For a more holistic approach, we propose the augmentation
of non-invasive brain-computer interfaces (BCI) technology
to robot-assisted rehabilitation to allow relevant cognitive
processes to be detected and monitored. This is motivated
by the recent advent of BCI technology that enables the
translation of thoughts and intents of humans to actions
by machines (for instance, a wheelchair [22]), as well as
monitoring and analysis of cognitive processes. Among the
few non-invasive techniques for brain signal acquisition,
including functional magnetic resonance imaging (fMRI),
magnetoencephalogram (MEG), near infrared spectroscopy
(NIRS) and electroencephalography (EEG), the latter has
excellent temporal resolution, and is considered the best
choice for BCI in affordable biofeedback and rehabilitation
practices. In the remainder of this section, we describe
specific BCI-based modules for the detection and monitoring
motor intention, attention to sensory stimuli, as well as
motivation and engagement. Based on these information,
the robot can automatically modulate parameters of the
rehabilitation protocol, e.g. speed, intensity and resistance,
so as to achieve more optimal therapy.

A. Motor Intention

Motor intention, in the context of normal subjects, is the
mental representation of the cognitive operations that initiate
volitional movement. However, given the fact that stroke
patients may be unable to initiate movements with their
affected limb, it is not apparent how motor intention for
stroke patients can be characterized. Motor imagery is the
cognitive process during which the representation of a move-
ment is internally reproduced in the absence of any motor
output. It has been postulated that similar neural mechanisms
underlie both motor imagery and motor planning [23], and
that the two processes are different only in the sense that the
motor execution is inhibited along corticospinal pathways
in the former case [24]. This implies that motor intention
can be detected through motor imagery, with the caveat
that the latter mechanisms are intact. Even if they are not
intact, it can be hypothesized that neuroplasticity is a viable
mechanism for driving the functional reorganization that

ultimately restores internal representations related to motor
imagery.

Detection of motor imagery with BCI has been investi-
gated with some success. Several EEG studies show that
motor imagery activates primary sensorimotor areas, and give
rise to distinct mental processes related to movement known
as Event-Related Desynchronization (ERD) / Synchroniza-
tion (ERS) for different frequency bands. In particular, imag-
ination of hand movement results in ERD of contralateral
hand area in the cortex [25]. To detect motor imagery for
a specific action, one can employ the approach of model
training and pattern classification. The acquired EEG data
can be analyzed in the temporal-spatial domain, followed by
the construction of optimal spatial filters that facilitates the
discrimination of the different classes of EEG measurements
(e.g. left and right movements) via a classifier.

Based on this information, in the context of goal-directed
reaching movement, the robot will only be activated to
move the patient’s paretic limb to the target if the BCI
module detects motor intention. It is well known from sports
psychology research that mental rehearsal of movements
helps to keep the motor program active, improve future
performance of the task, and facilitate the learning of new
motor behavior [26]. We postulate that with the added BCI
mechanism which ensures the patient’s cognitive involve-
ment through active motor imagery, similar benefits can be
gained in motor rehabilitation. Additionally, it is possible
that BCI-based rehabilitation robot can help to restore brain
representations of motor imagery damaged by stroke. BCI
enables a new pathway in which motor imagery is mapped to
robot actions that drive patient limb movements. The elicited
‘motor output’, in turn, cues sensory feedback, along visual
and proprioceptive channels, that mediates brain networks
involved in producing the motor imagery. By ensuring that
the elicited ‘motor output’, with respect to a particular task,
is consistent and repetitive, we can create conditions in which
the restitution of neural representations of motor imagery, for
that task, can take place, possible at an accelerated rate.

B. Attention to Sensory Stimuli

While an intensive, highly repetitive, and task-oriented
sensorimotor therapy is linked to the induction of long-
term brain plasticity and improvement of functional outcome,
it is also possible that repeated and unchallenging stimuli
from highly practiced movements can diminish attention to
sensory information in the motor control loop. This is a
possible scenario in robotic rehabilitation programs where
the robot moves the patient’s limb to the various targets
in a highly repetitive fashion over a large number of trials,
inducing factors that lead to lapse of attention in the patient.

Evidence show that diminished attention to motor task
impedes the motor learning process significantly, although
the effect on feedback control of movements is less dramatic
[20]. Interestingly, it has been found that the capacity of
sustaining attention plays an important role in motor recovery
following stroke [27]. Notable correlation was found between



sustained attention capacity at 2 months and motor function
after 2 years [28].

Visuo-spatial attention can be detected with a BCI module
by examining event-related potentials (ERPs), where an in-
crease in early sensory potentials (P1 component), elicited by
a cued target relative to an uncued one, indicated that the cues
target is being attended to [29]. Besides ERPs, the spectral
content of the EEG activity, particularly the gamma band
with frequencies greater than 30 Hz, can also be analyzed
to determine if attention is present [30]. For discrimination
of voluntary and involuntary attention, it appears that only
gamma-band analysis, and not ERP analysis, is able to show
differences between the two classes of attention [31].

The implication here for robotic rehabilitation systems
is that motor relearning can be made more optimal by
establishing a way to measure the patient’s attention during
the motor task, and then modulating feedback to the patient
in ways that increase attention to relevant features of the
task. For example, upon detection of attention lapse, the
training can be punctuated with various forms of feedback
such as auditory alerts, visual stimuli, force perturbations, or
a multimodal combination of these interactions that recapture
attention of the patient to the motor task.

C. Motivation and Engagement

At higher centers of the brain, there are cognitive factors
shaped by motivational and emotional state of the patient,
and these are believed to play a role in the recovery process.
Reports have indicated that post-stroke depression has a high
incidence of more than 60% [32], and that depression has an
effect on the functional outcome of a stroke [33]. It is widely
accepted among clinical professionals that the concept of
motivation is an important determinant of motor recovery,
as supported by empirical studies [34], [35]. Motivation is
in turn mediated by personality and social factors [36], thus
lending support to the use of socially assistive robotics for
stroke rehabilitation [37], and the enhancement of the gaming
aspects of rehabilitation [38].

Results from a study on neuroplasticity [39] has shed
some light on the theory that motor skill acquisition, rather
than repetitive use, is the key driver for reorganization of
sensorimotor maps in the cortex. Specifically, it was shown
that if animals are trained on a skill-demanding task that
requires motor learning results in various changes in neuronal
morphology corresponding to gradual improvement in per-
formance on the task. Conversely, no changes in motor maps
or neuronal morphology were observed if the task required
little or no learning. Assuming that the animal model is
valid, an important implication for stroke rehabilitation is
that repetitive practice alone is not sufficient. As motor
skill improves, there is a need to introduce additional task
demands so as to continually motivate the patient to be cog-
nitively involved in solving the problem, thereby engaging
the mechanisms of learning that drive the reorganization of
damaged pathways and maps in the brain.

There is a problem of fine balance between a rehabil-
itation program that is under-stimulating and one that is

exceedingly difficult to the extent of creating undue stress
for the patient. Current approaches that tailor the adaptive
therapy only to changes in behavioral measures of motor
skills may not capture all the facets of an optimal therapy.
The same external measures of motor performance may not
provide any indication of the degree of cognitive effort or the
level of psychological stress in the patient. Furthermore, the
perception of task difficulty and self-evaluation of progress is
expected to vary across patients in view of individual factors
that include attitude, self-motivation, and personality. Based
on the hypothesis that motivational and emotional factors
influence outcome of therapy, it makes sense to extract and
translate these features to appropriate actions by the robot.

We propose to employ BCI techniques for the detection
and monitoring of neurophysiological measures of emotional
and affective states, which can be combined with behavioral
measures of motor skills and then mapped to an appropriate
strategy that adapts the level of difficulty of the motor task
according to the high level cognitive processes. As a pre-
cursor to emotion recognition, we have developed a method
for autonomous detection of emotional response associated
with facial expressions, based on spectral-spatial features
extracted from EEG. Divide-and-conquer classification of 6
facial expressions, with 10x10-fold cross-validation, yielded
a mean accuracy of 87.4% for 4 subjects [40].

IV. PILOT STUDY ON MOTOR INTENTION

In this section, we present the results of a pilot study
on the integration of cognitive module detecting movement
intention into the robotic rehabilitation protocol. The inten-
tion detection module serves as a gate for activating the
robot to provide assistance of movement. This minimizes
the likelihood of the scenario of passive rehabilitation con-
sisting largely of movements performed solely by the robot,
without any mental effort on the part of the patient. Such a
module will comprise 2 phases: offline calibration and online
therapy. The calibration phase trains a model for classifying
movement intention, based on supervised learning on labeled
data. The online phase then relies on this model for detecting
movement intention during real interactions with the robot.

The data in this study was collected, with approval from
the Ethics Approval Board, from a group of healthy subjects
and hemiparetic stroke patients. EEG was measured using a
NuAmps amplifier (Compumedics), low pass filtered with a
cutoff frequency of 40Hz, and sampled at 250Hz. We used 25
recording electrodes covering the frontal, motor, and parietal
areas, with 2.5cm inter-electrode spacing. In addition, a
reference electrode was attached to the nose, and the ground
was 2.5 cm anterior of Fz. Impedance of the electrodes was
below 10kΩ. No artifact removal is performed.

To extract relevant features from EEG, we employ the
Filter Bank Common Spatial Pattern algorithm (FBCSP),
which has been shown to be effective for motor imagery tasks
[41]. The FBCSP computes, within each of several selected
frequency bands, features which have variances that are op-
timal for discriminating between two classes of data. Figure
3, which shows the spatial patterns of a healthy subject
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Fig. 3. Spatial patterns of healthy and left hemiparetic subjects who
performed right hand tapping and left hand motor imagery. Right action
is correlated with activity in the left hemisphere for both healthy subjects
and patients. However, activity correlated with left action is not in the right
hemisphere for two of the patients (second and third from left).

who performed finger tapping on both hands, together with
left hemiparetic stroke patients who performed right hand
tapping and left hand motor imagery. For right action, spatial
pattern are seen over the left hemisphere for both healthy
subjects and patients. However, for left action, the spatial
patterns observed are very different from those for right
action. While the spatial pattern for the healthy subject is on
the right hemisphere, that for the patients are not localized in
the same region, possibly because the brain sites responsible
for generating ERD/ERS during left hand motor imagery are
damaged by stroke. We are launching further investigations
on correlating the spatial patterns with neurological damage
revealed by magnetic resonance imaging. Nevertheless, the
different spatial patterns across the two types of actions, as
elicited by FBCSP, provide important features to discriminate
one class from the other.

The actual experiment, which is implemented on the MIT-
Manus robot, is concerned with detecting EEG correlates
of movement intention. Patients were instructed to perform
motor imagery on the affected arm, while healthy subjects
can do it on either arm. Each subject rested his/her arm on the
robotic device and faced a computer screen, which displayed
visual cues instructing the subjects to perform or cease motor
imagery. Each trial comprised EEG data segment recorded
from 0.5s to 2.5s after the visual cue.

In the calibration phase, each subject performed a balanced
set of 80 trials with and without motor imagery, presented in
random order. On trials involving motor imagery, at 3s after
the onset of the visual cue, the robot moved the arm to one
of several targets in the horizontal plane, and then returned
to the original position. It remained motionless on trials
not involving motor imagery. In the online testing phase,
each subject performed a balanced set of 40 trials. During
each trial, the post-cue EEG data segment is autonomously
analyzed. After relevant features have been extracted from
EEG using the FBCSP algorithm, the Naı̈ve Bayes Parzen
Window classifier is used to detect motor imagery. Only
when motor imagery is detected does the robot execute the
motion. For stroke patients, a second session was conducted
on a separate day.

TABLE I

ACCURACY OFDETECTION FORHEALTHY SUBJECTS

Healthy
Subject

H1 H2 H3 H4 mean± s.t.d.

Calibration
Accuracy % 94.4 90.6 95.0 88.2 92.0± 3.2
Online
Accuracy % 85.0 72.5 67.5 75.0 75.0± 7.4

TABLE II

ACCURACY OFDETECTION FORSTROKE PATIENTS

Patient P1 P2 P3 P4 mean± s.t.d.

Calibration
Accuracy %

Session 1 92.5 90.6 93.1 83.8 90.0± 4.3
Session 2 82.5 94.4 93.1 84.4 88.6± 6.0

Online
Accuracy %

Session 1 82.5 82.5 67.5 72.5 76.3± 7.5
Session 2 80.0 75.0 75.0 70.0 75.0± 4.1

Table I and II show the detection accuracy for healthy sub-
jects and patients. For both groups, the calibration accuracy
is higher than the online accuracy, withp-value<0.05 based
on paired-samplet-test. This is possibly due to overtraining
in the calibration dataset, which weakens the generalizability
of the model to unseen data during online testing and/or
non-stationarity of EEG across the different conditions of
calibration and online testing. Nevertheless, the online accu-
racies for both groups, at about 75%, are significantly above
chance. Between the groups, the mean online accuracies
are comparable, suggesting that neurological damage in the
hemiparetic stroke patients does not significantly affect their
capability of operating a BCI-controlled robot compared with
healthy subjects. For stroke patients, the online accuracies
between the 2 sessions are statistically insignificant (p-
value=0.606).

V. CONCLUSIONS

This paper has presented a framework for motor reha-
bilitation through augmentation of cognitive channels of
interactions between patient and robot. A complete motor
scheme involves interactions between motor planning, execu-
tion, sensory feedback, and attention, which in turn mediate
motor learning. At higher levels, there are cognitive factors
shaped by motivational and emotional state of the patient.
These cognitive processes play fundamental roles in motor
performance and skill acquisition, and need to be taken into
consideration for optimal therapy. By providing communica-
tion between the patient’s mental processes and the robotic
system through BCI technology, the functional outcome
of rehabilitation is expected to improve. Additionally, they
provide key evaluative measures that facilitate customization
of rehabilitation strategies by human therapists. Preliminary
results on BCI detection of movement intention, for a small



group of stroke patients, show feasible accuracies under
online operation. Based on the promising results of this
pilot study, we are currently clinical studies on the treatment
effect of our BCI-robotics based neurorehabilitation for a
larger group of stroke patients. Future topics of investigation
include detection of attention to movements, as well as
motivational and emotional states of the patient.
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