Augmenting Cognitive Processes in Robot-Assisted Motor
Rehabilitation

Keng Peng Tee, Cuntai Guan, Kai Keng Ang, Kok Soon Phua, Chuanchu Wang, and Haihong Zhang
Institute for InNfocomm Research
Agency for Science, Research and Technology (A*STAR)
Singapore 138632
kptee@i2r.a-star.edu.sg

Abstract— Cognitive processes, such as motor intention, at-  Traditional physical and occupational therapy for stroke
tention, and higher level motivational states are important patients, such as the Bobath approach and the Motor Re-
factors that govern motor performance and learning. Current learning Program, typically involve exercises that attempt

robot-assisted rehabilitative programs focus only on the physical t tor deficit di t tt
aspects of training. In this paper, we propose a framework for 0 overcome motor derncits and Improve motor patterns,

motor rehabilitation based on the augmentation of cognitive With the help of therapists [4]. More recently, promising
channels of patient-robot interactions and using it to deliver results has been demonstrated in Constraint-induced Move-
a more optimal therapy. By examining the cognitive processes ment Therapy, which forces the use of the affected side by
involved in motor control and adaptation, it is argued that restraining the unaffected side [5].

optimal therapy needs to be considered in the context of a Lot
complete motor scheme consisting not only of sensorimotor Although the above rehabilitation methods are well-

signals, but also their interactions with cognitive operations, €stablished in practice, and well-supported by evidence of
such as motor planning, attention, and motivation, which improved outcome, they are labor intensive and expensive.
mediate motor learning. We outline a few BCl-based modules Furthermore, manually assisted movement training lacks
for the detection and monitoring of relevant cognitive processes, repeatability and objective measures of patient performance
which provide inputs for the robot to automatically modulate d th With the advent of robotic technol
parameters of the rehabilitation protocol. Preliminary inves- an eralpy.progr.ess. ! eg vent of robotic technology
tigations on a BCI module for detection of motor intention, ~and new insights in the neuroscience of human motor adap-
performed on a small group of stroke patients, show feasible tation, we are witnessing a paradigm shift to robot-assisted
accuracies. motor rehabilitation [6]. Rehabilitation programs that incor-
porate robotic and information technology can ameliorate the
I. INTRODUCTION increasing burden on manpower by automating parts of the
8¥ocess that are repetitive and time-consuming. Additionally,

Recent statistics identified stroke as a leading cause ropots are able to provide consistent training in an efficient
death in the world. Yet, the consequences of stroke sprea(}) P 9

beyond patient mortality. Of those who survive a stroke, arpanner, pervasive and accurate monitoring of the progress

least 30% fail to make a complete recovery and will experi9f patients. Rich data on body kinematics and dynamics

C . . can facilitate analysis on patient condition and shed light on
ence disabilities relating to movement, speech, concentratlo%tter ways to customize the therapy. Clinical studies have
" o rr . . .
and cognition, and a_fl_Jr_ther 20/.0 W.'”. continue to reqUIrereported significant improvements on rehabilitation outcome
long-term care for activities of daily living [1]. based on clinical measures [7], [8]

The principles guiding post-str_oke motor rghabilitation are Most of the current robotic r,ehabilitation approaches are
ma'”'y founded on t_he me_chanlsms of cort|_cal reorganizasantered on physical therapy, and devote minimal emphasis
tion, or neuro-plasticity, which refers to experlence-medlate% cognitive factors that play a role in determining rehabil-
functional reorganization of the brain. Another hypothesis iﬁ tion progress and outcome. For optimal therapy, motor

that the functional roles of the affected tissue are adopt tput cannot be considered in isolation. A complete motor

by parallel brain regions in the unaffected hemisphere, faci scheme consists of interactions between motor planning,

itated by descending brain fibers from one brain hemiSpheE§<ecution, sensory feedback, and attention, which in turn

that do not cross over to the contralateral body hem'Spheﬁ?ediate motor learning. On top of that, higher level cognitive

[2]. Evidence from animal studies suggest that t.he €NV ctors such as motivation and emotion are also determinants
ronment has an.effec_:t on th_e po_st—stroke reorgamzanon 8aF rehabilitation outcome. We propose a new approach of
undqr;agedl cor]:ucal t|s§ ues mthprlmatte S [3],tallut§i|ng t? ttk?Fobot—assisted motor rehabilitation which takes into account
posstl_ el' rctJ)e ot exercise in the motor restoration o %ognitive processes that play key roles in motor control and
paretic imb. learning. State of the art brain-computer interface technology

. ) ) o is a fertile ground for research into ways of detection and
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of A*STAR (Agency for Science, Technology and Research), and Thénonitoring cognitive processgs such as in_tention' attention
Enterprise Challenge, Prime Minister's Office, Singapore. and emotion, and these provide a novel dimension towards



seemingly different strategies for learning can be unified

Localization of target Attention . Lo

and limb under a framework which concurrently minimizes neural

l l feedback, in the form of reflexes, and muscle activation [15].

, , , Motor intention can be understood as a collection of cogni-

", Motor plan (kinematic Learning . . .
Cognitive and dynamic) ] tive processes that initiates a goal-directed sequence of body

l movements. In particular, it encompasses the localization

of target and limb, as well as the planning of movement

Sensorimotor) - Motor execution and kinematics and dynamics. An important cognitive precursor

control
I to any attempt to generate, or imagine, a movement in space
is visuo-spatial attention to limb and target positions. During
Sensory feedback motor execution, attention to task related features of the

movement has an effect on motor performance [16], [17].
These may be kinematic features related to position error
Fig. 1. A complete motor scheme consists of interactions between moténd sensorimotor transformation, or dynamic ones related
planning, execution, sensory feedback, and attention, which in turn mediaig force production. Evidence from a neuroimaging study
motor learning. [18] suggests that visual attention during movement modifies

the goal of optimizing motor therapy that can potentiallyorain activity in ways that are different from those occurring
enlarge the group of patients who can benefit from robotitr movement or visual attention alone.
rehabilitation. The roles of attention in the learning of novel sensorimotor
transformation, and in the adaptation to novel force per-
Il. MOTOR CONTROL, LEARNING, AND THE turbations, have been investigated in several studies. When
COGNITIVE PROCESSES INVOLVED cognitive load is imposed on a prism adaptation task, subjects
Figure 1 provides a conceptual framework which illusshowed increased terminal pointing errors [19]. Furthermore,
trates the putative roles and relationships between motprwas found that divided attention impairs motor adaptation
intention/planning, execution, and modulation of sensonp a significantly greater extent than motor control [16], [20],
activities by attention during a complete motor schemand that attention is necessary to monitor movements and
for goal-directed reaching movements. First, localization aévaluate errors when learning to perform a novel motor task
target and limb takes place, where the Central Nervous in the presence of motor deficit [21].
System (CNS) resolves the target-centered coordinates, limb-|n summary, intention and attention are indispensable to
centered coordinates and eye-centered coordinates intah@ voluntary initiation of movements and have significant
common frame of reference in order to determine the trugffects on motor and learning performance. The implication
spatial relationship between the target and limb relevant #r post-stroke motor rehabilitation is that focus on only the
the reaching task. This is followed by the computation ofxplicit behavioral aspects, i.e. limb displacements, while
the direction and extent of the error in limb location relatiVQQnoring the internal Cognitive processes that underlie move-
to the target, which is key to the planning of movemenient generation and adaptation, may lead to suboptimal or

kinematics, that is, the specification of the path and speggcomplete learning of motor scheme for unassisted activities
of movement. Based on the planned kinematics, the CNg daily living.

specifies the feedforward motor command, which constitute

the forces needed to be produced to move the limb against;; AUGMENTING COGNITIVE PROCESSES IN
its own inertia as well as any external forces, via an inverse MOTOR REHABILITATION

dynamics map [9].

With the planned movement dynamics, the motor circuits In current works on robotic rehabilitation, the robot pro-
residing at the spinal cord level then coordinate the temporaides assistive actions based solely on the motor output
aspects of muscle force generation needed to generate tliables such as limb velocity or electromyogram (EMG)
actual movement. During the movement, the error kinematicggnals, but not the cognitive processes that drive and monitor
of the limb relative to the target are monitored via visual angoluntary movements. The assumption is that the patient
proprioceptive pathways, with the help of forward modelss well motivated towards the therapy and fully utilizing
that predict future limb states based on an efference of tliee neural mechanisms pertaining to motor intention and
motor command [10]. Then, feedback control via reflexeattention. For typical robot-aided rehabilitation involving
and intrinsic viscoelastic muscle properties takes place teaching movements of the paretic limb, in the absence of
stabilize the limb against unexpected perturbations. any motor output from the patient within a time limit, the

Motor learning involves the adaptation of the inversegobot automatically moves the patient’s limb to the target and
dynamics map which generates motor commands in resporsack. In this case, it is difficult to judge objectively whether
to a novel motor task or interaction with the environ-the patient is cognitively involved in the process. Did the
ment. Humans form appropriate internal models to overconpatient generate a motor plan to reach the target even though
external dynamics in both stable [11], [12] and unstabléhe movement was not initiated, or attend to sensory feedback
interactions [13], [14], and recent results suggest that theséen the movement is passively performed with the help of



ultimately restores internal representations related to motor
imagery.

Detection of motor imagery with BCIl has been investi-
gated with some success. Several EEG studies show that
motor imagery activates primary sensorimotor areas, and give
rise to distinct mental processes related to movement known
as Event-Related Desynchronization (ERD) / Synchroniza-
tion (ERS) for different frequency bands. In particular, imag-
ination of hand movement results in ERD of contralateral
hand area in the cortex [25]. To detect motor imagery for
a specific action, one can employ the approach of model
training and pattern classification. The acquired EEG data
Fig. 2. BCl-based robotic rehabilitation system: Augmenting cognitve:an be analyzed in the temporal-spatial domain, followed by
processes such as intention, attention and emotion, provide a novel d'm?ﬂ'e construction of optimal spatial filters that facilitates the
sion towards the optimization of motor therapy.

discrimination of the different classes of EEG measurements
the robot? Current approaches do not readily lend themselugsg. left and right movements) via a classifier.
to addressing these pertinent questions. Based on this information, in the context of goal-directed

For a more holistic approach, we propose the augmentatiggdaching movement, the robot will only be activated to
of non-invasive brain-computer interfaces (BCI) technologynove the patient’s paretic limb to the target if the BCI
to robot-assisted rehabilitation to allow relevant cognitivenodule detects motor intention. It is well known from sports
processes to be detected and monitored. This is mOtiv&thychology research that mental rehearsal of movements
by the recent advent of BCI technology that enables thgelps to keep the motor program active, improve future
translation of thoughts and intents of humans to actionserformance of the task, and facilitate the learning of new
by machines (for instance, a wheelchair [22]), as well agotor behavior [26]. We postulate that with the added BCI
monitoring and analysis of cognitive processes. Among thg&iechanism which ensures the patient’s cognitive involve-
few non-invasive techniques for brain signal acquisitionment through active motor imagery, similar benefits can be
including functional magnetic resonance imaging (fMRI)gained in motor rehabilitation. Additionally, it is possible
magnetoencephalogram (MEG), near infrared spectroscofhat BCI-based rehabilitation robot can help to restore brain
(NIRS) and electroencephalography (EEG), the latter hagpresentations of motor imagery damaged by stroke. BCI
excellent temporal resolution, and is considered the beshables a new pathway in which motor imagery is mapped to
choice for BCI in affordable biofeedback and rehabilitatiorrobot actions that drive patient limb movements. The elicited
practices. In the remainder of this section, we describenotor output’, in turn, cues sensory feedback, along visual
specific BCl-based modules for the detection and monitoringnd proprioceptive channels, that mediates brain networks
motor intention, attention to sensory stimuli, as well asnvolved in producing the motor imagery. By ensuring that
motivation and engagement. Based on these informatiofhe elicited ‘motor output’, with respect to a particular task,
the robot can automatically modulate parameters of thg consistent and repetitive, we can create conditions in which
rehabilitation protocol, e.g. speed, intensity and resistancge restitution of neural representations of motor imagery, for
so as to achieve more optimal therapy. that task, can take place, possible at an accelerated rate.

A. Motor Intention

. . . ) . B. Attention to Sensory Stimuli
Motor intention, in the context of normal subjects, is the

mental representation of the cognitive operations that initiate While an intensive, highly repetitive, and task-oriented
volitional movement. However, given the fact that strokesensorimotor therapy is linked to the induction of long-
patients may be unable to initiate movements with thefierm brain plasticity and improvement of functional outcome,
affected limb, it is not apparent how motor intention forit is also possible that repeated and unchallenging stimuli
stroke patients can be characterized. Motor imagery is tHeom highly practiced movements can diminish attention to
cognitive process during which the representation of a moveensory information in the motor control loop. This is a
ment is internally reproduced in the absence of any motdgrossible scenario in robotic rehabilitation programs where
output. It has been postulated that similar neural mechanisrifie robot moves the patient's limb to the various targets
underlie both motor imagery and motor planning [23], andn a highly repetitive fashion over a large number of trials,
that the two processes are different only in the sense that thiglucing factors that lead to lapse of attention in the patient.
motor execution is inhibited along corticospinal pathways Evidence show that diminished attention to motor task
in the former case [24]. This implies that motor intentionmpedes the motor learning process significantly, although
can be detected through motor imagery, with the cavette effect on feedback control of movements is less dramatic
that the latter mechanisms are intact. Even if they are n{0]. Interestingly, it has been found that the capacity of
intact, it can be hypothesized that neuroplasticity is a viablgustaining attention plays an important role in motor recovery
mechanism for driving the functional reorganization thafollowing stroke [27]. Notable correlation was found between



sustained attention capacity at 2 months and motor functiexceedingly difficult to the extent of creating undue stress
after 2 years [28]. for the patient. Current approaches that tailor the adaptive
Visuo-spatial attention can be detected with a BCI modultherapy only to changes in behavioral measures of motor
by examining event-related potentials (ERPs), where an iskills may not capture all the facets of an optimal therapy.
crease in early sensory potentials (P1 component), elicited Bjne same external measures of motor performance may not
a cued target relative to an uncued one, indicated that the cy#svide any indication of the degree of cognitive effort or the
target is being attended to [29]. Besides ERPs, the spectiavel of psychological stress in the patient. Furthermore, the
content of the EEG activity, particularly the gamma bangberception of task difficulty and self-evaluation of progress is
with frequencies greater than 30 Hz, can also be analyzedpected to vary across patients in view of individual factors
to determine if attention is present [30]. For discriminatiorthat include attitude, self-motivation, and personality. Based
of voluntary and involuntary attention, it appears that onlpn the hypothesis that motivational and emotional factors
gamma-band analysis, and not ERP analysis, is able to shavfluence outcome of therapy, it makes sense to extract and
differences between the two classes of attention [31]. translate these features to appropriate actions by the robot.
The implication here for robotic rehabilitation systems We propose to employ BCI techniques for the detection
is that motor relearning can be made more optimal bgnd monitoring of neurophysiological measures of emotional
establishing a way to measure the patient’s attention durirand affective states, which can be combined with behavioral
the motor task, and then modulating feedback to the patiemteasures of motor skills and then mapped to an appropriate
in ways that increase attention to relevant features of trarategy that adapts the level of difficulty of the motor task
task. For example, upon detection of attention lapse, theecording to the high level cognitive processes. As a pre-
training can be punctuated with various forms of feedbac&ursor to emotion recognition, we have developed a method
such as auditory alerts, visual stimuli, force perturbations, dor autonomous detection of emotional response associated
a multimodal combination of these interactions that recaptuseith facial expressions, based on spectral-spatial features

attention of the patient to the motor task. extracted from EEG. Divide-and-conquer classification of 6
L facial expressions, with 10x10-fold cross-validation, yielded
C. Motivation and Engagement a mean accuracy of 87.4% for 4 subjects [40].

At higher centers of the brain, there are cognitive factors
shaped by motivational and emotional state of the patient, IV. PILOT STUDY ON MOTOR INTENTION
and these are believed to play a role in the recovery processin this section, we present the results of a pilot study
Reports have indicated that post-stroke depression has a hahthe integration of cognitive module detecting movement
incidence of more than 60% [32], and that depression has arention into the robotic rehabilitation protocol. The inten-
effect on the functional outcome of a stroke [33]. It is widelytion detection module serves as a gate for activating the
accepted among clinical professionals that the concept odbot to provide assistance of movement. This minimizes
motivation is an important determinant of motor recoverythe likelihood of the scenario of passive rehabilitation con-
as supported by empirical studies [34], [35]. Motivation issisting largely of movements performed solely by the robot,
in turn mediated by personality and social factors [36], thusithout any mental effort on the part of the patient. Such a
lending support to the use of socially assistive robotics fanodule will comprise 2 phases: offline calibration and online
stroke rehabilitation [37], and the enhancement of the gamirigerapy. The calibration phase trains a model for classifying
aspects of rehabilitation [38]. movement intention, based on supervised learning on labeled

Results from a study on neuroplasticity [39] has shedata. The online phase then relies on this model for detecting
some light on the theory that motor skill acquisition, rathemovement intention during real interactions with the robot.
than repetitive use, is the key driver for reorganization of The data in this study was collected, with approval from
sensorimotor maps in the cortex. Specifically, it was showthe Ethics Approval Board, from a group of healthy subjects
that if animals are trained on a skill-demanding task thand hemiparetic stroke patients. EEG was measured using a
requires motor learning results in various changes in neuronduAmps amplifier (Compumedics), low pass filtered with a
morphology corresponding to gradual improvement in peieutoff frequency of 40Hz, and sampled at 250Hz. We used 25
formance on the task. Conversely, no changes in motor magpecording electrodes covering the frontal, motor, and parietal
or neuronal morphology were observed if the task requireareas, with 2.5cm inter-electrode spacing. In addition, a
little or no learning. Assuming that the animal model igeference electrode was attached to the nose, and the ground
valid, an important implication for stroke rehabilitation iswas 2.5 cm anterior of Fz. Impedance of the electrodes was
that repetitive practice alone is not sufficient. As motobelow 10kQ. No artifact removal is performed.
skill improves, there is a need to introduce additional task To extract relevant features from EEG, we employ the
demands so as to continually motivate the patient to be coBilter Bank Common Spatial Pattern algorithm (FBCSP),
nitively involved in solving the problem, thereby engagingwhich has been shown to be effective for motor imagery tasks
the mechanisms of learning that drive the reorganization ¢41]. The FBCSP computes, within each of several selected
damaged pathways and maps in the brain. frequency bands, features which have variances that are op-

There is a problem of fine balance between a rehabitimal for discriminating between two classes of data. Figure
itation program that is under-stimulating and one that i8, which shows the spatial patterns of a healthy subject



TABLE |
ACCURACY OFDETECTION FORHEALTHY SUBJECTS

Healthy H1 H2 H3 H4 mean + s.t.d.
Subject

Calibration

Accuracy % 944 90.6 95.0 88.2 92€3.2
Online

Accuracy % 85.0 725 675 750 75607.4

o 2 o TABLE Il
Left Hemiparetic Healthy ACCURACY OF DETECTION FORSTROKE PATIENTS
Fig. 3. Spatial patterns of healthy and left hemiparetic subjects who .
Patient P1 P2 P3 P4 meant s.t.d.

performed right hand tapping and left hand motor imagery. Right action
is correlated with activity in the left hemisphere for both healthy subjects
and patients. However, activity correlated with left action is not in the right
hemisphere for two of the patients (second and third from left).

Calibration
Accuracy %
Sessionl 925 906 93.1 838 96t04.3
Session2 825 944 931 844 88t66.0

who performed finger tapping on both hands, together with _
. . . . Online
left hemiparetic stroke patients who performed right hand  accuracy %
tapping and left hand motor imagery. For right action, spatial Sessionl 825 825 675 725 76£37.5
pattern are seen over the left hemisphere for both healthy ~ Session2 800 750 750 700  7504.1
subjects and patients. However, for left action, the spatial
patterns observed are very different from those for right
action. While the spatial pattern for the healthy subject is on Table I and Il show the detection accuracy for healthy sub-
the right hemisphere, that for the patients are not localized jacts and patients. For both groups, the calibration accuracy
the same region, possibly because the brain sites responsilsidnigher than the online accuracy, wighvalue<0.05 based
for generating ERD/ERS during left hand motor imagery aren paired-samplé-test. This is possibly due to overtraining
damaged by stroke. We are launching further investigations the calibration dataset, which weakens the generalizability
on correlating the spatial patterns with neurological damag# the model to unseen data during online testing and/or
revealed by magnetic resonance imaging. Nevertheless, then-stationarity of EEG across the different conditions of
different spatial patterns across the two types of actions, &glibration and online testing. Nevertheless, the online accu-
elicited by FBCSP, provide important features to discriminateacies for both groups, at about 75%, are significantly above
one class from the other. chance. Between the groups, the mean online accuracies
The actual experiment, which is implemented on the MITare comparable, suggesting that neurological damage in the
Manus robot, is concerned with detecting EEG correlatdiemiparetic stroke patients does not significantly affect their
of movement intention. Patients were instructed to perforéapability of operating a BCI-controlled robot compared with
motor imagery on the affected arm, while healthy subjectdealthy subjects. For stroke patients, the online accuracies
can do it on either arm. Each subject rested his/her arm on tRetween the 2 sessions are statistically insignificamt (
robotic device and faced a computer screen, which display&glue=0.606).
visual cues instructing the subjects to perform or cease motor
imagery. Each trial comprised EEG data segment recorded V. CONCLUSIONS
from 0.5s to 2.5s after the visual cue. This paper has presented a framework for motor reha-
In the calibration phase, each subject performed a balanchiiitation through augmentation of cognitive channels of
set of 80 trials with and without motor imagery, presented iinteractions between patient and robot. A complete motor
random order. On trials involving motor imagery, at 3s aftescheme involves interactions between motor planning, execu-
the onset of the visual cue, the robot moved the arm to onimn, sensory feedback, and attention, which in turn mediate
of several targets in the horizontal plane, and then returnedotor learning. At higher levels, there are cognitive factors
to the original position. It remained motionless on trialsshaped by motivational and emotional state of the patient.
not involving motor imagery. In the online testing phaseThese cognitive processes play fundamental roles in motor
each subject performed a balanced set of 40 trials. Duringerformance and skill acquisition, and need to be taken into
each trial, the post-cue EEG data segment is autonomousignsideration for optimal therapy. By providing communica-
analyzed. After relevant features have been extracted frotion between the patient's mental processes and the robotic
EEG using the FBCSP algorithm, the iMa Bayes Parzen system through BCI technology, the functional outcome
Window classifier is used to detect motor imagery. Onlpf rehabilitation is expected to improve. Additionally, they
when motor imagery is detected does the robot execute tpeovide key evaluative measures that facilitate customization
motion. For stroke patients, a second session was conduct#drehabilitation strategies by human therapists. Preliminary
on a separate day. results on BCI detection of movement intention, for a small




group of stroke patients, show feasible accuracies undgs] I. Indovina and J. N. Sanes, “Combined visual attention and finger
online operation. Based on the promising results of this
pilot study, we are currently clinical studies on the treatmeng,
effect of our BCI-robotics based neurorehabilitation for a
larger group of stroke patients. Future topics of investigatiolf®l
include detection of attention to movements, as well as

motivational and emotional states of the patient.
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