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Abstract

This paper presents a subject-independent EEG

(Electroencephalogram) classification technique and its

application to a P300-based word speller. Due to EEG

variations across subjects, a user calibration procedure

is usually required to build a subject-specific classifi-

cation model (SSCM). We remove the user calibration

through the boosting of a committee of weak classifiers

learned from EEG of a pool of subjects. In particular,

we ensemble the weak classifiers based on their confi-

dence that is evaluated according to the classification

consistency. Experiments over ten subjects show that

the proposed technique greatly outperforms the super-

vised classification models, hence making P300-based

BCIs more convenient for practical uses.

1 Introduction

The emerging technology of brain-computer inter-
face (BCI) has attracted increasing interest from multi-
disciplinary domains [1]. The technology directly trans-
lates brain signals into communication messages while
bypassing normal neuromuscular pathways. Thus it po-
tentially provides severely paralyzed people with com-
munication, control or rehabilitation tools to help com-
pensate or restore their lost capabilities.

P300 is an endogenous, positive polarity component
of the event-related brain potential (ERP) and it has
been widely used for the purpose of brain computer
interface (BCI). Farwell and Donchin [2] first demon-
strate the use of P300 in a so-called oddball paradigm.
In the paradigm, the computer displays a matrix of cells
and flashes each row and column shown in Fig. 1 alter-
nately in a random order. Subjects needs to focus on a
cell for a short while, meanwhile a P300 ERP will be
elicited in the subject’s EEG (Electroencephalogram)
when the row or the column specifying the focused cell
flashes. The elicited P300 can then be identified by sig-

Figure 1. Interface of P300-based speller.

nal processing and machine learning algorithms [3, 4].

Many studies [7, 8] have shown variations of P300
across subjects. In particular, P300 amplitude and la-
tency vary among both normal and clinical populations
shown in Fig. 2. As a result, P300 models learned from
one subject would not apply well to another subject. To
deal with such EEG variations, most P300-based BCIs
usually perform a user calibration to build a subject-
specific classification model (SSCM). But the user cali-
bration makes BCIs inconvenient for practical uses.

This paper presents a subject-independent EEG clas-
sification technique that does not require the user cal-
ibration. The proposed technique is based on the ob-
servation that P300 of different subjects usually share
common waveform characteristics as defined, namely, a
positive peak after around 300 ms of the external stim-
uli. It directly classifies EEG a new subject by boost-
ing multiple weak EEG classifiers that are learned from
EEG of a pool of existing subjects.

2 Proposed Techniques

This section presents our proposed EEG classifica-
tion technique including the EEG preprocessing, the
EEG classification by using linear discriminant, and the
boosting classification, respectively.
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Figure 2. P300 of ten healthy subjects.

2.1 EEG Preprocessing

Collected EEG needs to be preprocessed. In the pro-
posed technique epoched EEG is frst fed into a low-
pass filter and then down-sampled at 60Hz. A ten-order
Chebyshev II type IIR filter is then implemented where
the passband cut-off frequency is set at 10Hz [5].

Ocular artifacts are then removed by treating the
sampled EEG E(n) as a linear superposition of the mea-
sured EOG u(n) and the real EEG w(n). We remove the
EOG by the difference model [4] as follows:

E(n) = E(n′)+
N

∑
i=1

bi(ui(n)−ui(n
′))+wi(n)−wi(n

′)

(1)
where n′ = n−1 and N is the number of sites at which
the EOG is measured, two in our setup.

2.2 EEG Classification

Before the EEG classification, we first convert the
each epoched EEG into a feature vector as follows:

x = [x(1)T , ...,x(i)T , ...,x(c)T ]T (2)

where x(i) refers to the EEG collected from the i-th se-
lected channel and the parameter c refers to the number
of channels selected (8 in our setup).

Different EEG classification techniques have been
reported [6]. We identify P300 by using Fisher’s linear
discriminant (FLD), which determines a linear combi-
nation of a feature vector that maximizes the ratio of its
between-classes variance to its within-classes variance:

argmax
w

J(w) =
wT Sbw

wT Sww
(3)

where Sb and Sw correspond to the between-classes and
within-classes scatter matrix, respectively.

For the two-class classification, the linear combina-
tion w can be similarly derived by the discriminant func-
tion that maximizes the posterior probability:

φi(x) = ln p(θi|x) = ln p(x|θi)+ ln p(θi), i = 1,2 (4)

Figure 3. (a) P300 posterior probability of
the 12 flashes within one round; (b) Re-
sults of MAX(); (c) Histogram of MAX()
over 10 rounds; (d) Histogram of MAX()
over another 10 rounds.

where p(θi), i = 1,2 refers to a priori, which is equal to
1/6 or 5/6 according to the protocol of the P300-based
word speller. The p(x|θi), i = 1,2 has a Gaussian distri-
bution and its parameters can be estimated from train-
ing EEG. P300 can thus be identified by the row/column
that has the maximum P300 posterior probability aver-
aged over multiple rounds of stimulation.

2.3 Boosting Classification

This section presents the proposed boosting tech-
nique. First, a committee of weak classifiers is built by
learning from EEG of a pool of subjects. Multiple weak
classifiers are then weighted according to their confi-
dence. Particularly, we measure the classifier confi-
dence based on the classifier consistency evaluated over
multiple rounds of stimuli:

Ci = P(
R

∑
j=1

MAX(Φ j))−SP(
R

∑
j=1

MAX(Φ j)) (5)

where R is the number of the rounds and Φ j is a 12-
dimensional vector storing the P300 posterior probabil-
ity of the 12 flashes within the j-th round. MAX() is
defined as follows:

MAX(Φ j)=

{

1 the row/column with the peak Pdf
0 others

(6)
The functions P()/SP() return the sum of the frequency
of the peak/second-peak row and column accumulated
over R rounds of flashing, respectively.

Fig. 3 illustrates the measurement of the classifier
confidence. For one specific EEG classifier, Fig. 3a



Table 1. Accuracy of SSCMs and and cross-subject classification models.
❤

❤
❤

❤
❤

❤
❤

❤
❤

❤
Training EEG

Testing EEG
Subject1 Subject2 Subject3 Subject4 Subject5 Subject6 Subject7 Subject8 Subject9 Subject10

Subject1 0.9878 0.8049 0.9268 0.8659 0.4146 0.8293 0.7195 0.6951 0.8537 0.4756

Subject2 0.9024 0.9756 0.8293 0.5854 0.2927 0.4756 0.3659 0.4024 0.8415 0.4268

Subject3 0.9146 0.7317 0.9878 0.8537 0.2561 0.8415 0.6341 0.7073 0.6829 0.6341

Subject4 0.7805 0.4634 0.7683 1.0000 0.4024 0.8902 0.5976 0.4878 0.8780 0.3659

Subject5 0.4878 0.2805 0.5000 0.6341 0.9024 0.6829 0.5244 0.6707 0.4024 0.1707

Subject6 0.5854 0.1463 0.6585 0.8659 0.4024 1.0000 0.9512 0.9634 0.6829 0.1951

Subject7 0.5488 0.2805 0.6585 0.8780 0.3659 0.8537 1.0000 0.8780 0.6585 0.2317

Subject8 0.2439 0.2073 0.4390 0.5000 0.1098 0.8902 0.6585 1.0000 0.2073 0.3049

Subject9 0.8902 0.8902 0.9024 0.9878 0.5366 0.9268 0.8293 0.8171 1.0000 0.5244

Subject10 0.8415 0.6220 0.7195 0.5244 0.1463 0.5366 0.6220 0.7805 0.5610 0.9512

shows the P300 posterior probability of the 12 flashes
within one round. Fig. 3b shows the results of the func-
tion MAX() in Equation (5). Fig. 3c further shows
the peak row/column accumulated over 10 rounds of
flashing. As we can see, the frequency of the peak
row/column (i.e. 3rd row and the 4th column) reaches
up to 6 and 7, respectively. Thus the two functions P()
and SP() in Equation (5) return 13 (i.e. 6 + 7) and 2
(i.e. 1 + 1), respectively. The classifier confidence can
be finally evaluated at 11 (i.e. 13−2).

The confidence measurement is based on the fact that
EEG with P300 usually shows specific P300 pattern but
those without P300 is much more random. Clearly, the
classifier consistency is high when 1) the frequency of
the peak row/column is high; 2) the frequency differ-
ence between the peak and the second peak row/column
is high. The second condition ensures the saliency of
the frequency of the peak row/column. As Fig. 3d
shows, though the frequency of the peak row/column
of another ten rounds of flashing is the same as that in
Fig. 3c, the confidence is just 8 (i.e. 13−5).

The weak classifiers can thus be combined based on
their confidence. Particularly, the posterior probability
of the boosted classifier is derived by weighting the pos-
terior probability of multiple weak classifiers:

Φ =
∑N

i=1 Ci ·Φi

∑N
i=1 Ci

(7)

where N is the number of weak classifiers and Φi is
the same as defined in Equation (5). Ci refers to the
confidence of i-th subject.

3 Experimental Results

We evaluate the proposed technique by EEG col-
lected from ten healthy subjects. For each subject, two
EEG sessions are collected by spelling 41 characters
(THE QUICK BROWN FOX JUMPS OVER LAZY

DOG 246138 579) in two different orders. Ten rounds
of flashing are implemented for the spelling of each
character and EEG between 150 ms and 500 ms follow-
ing each flash is recorded. Besides, EEG is recorded
by using eight channels (Fz Cz P3 Pz P4 PO7 PO8 OZ)
with sampling rate at 250Hz.

3.1 P300 Variability

We study the P300 variability through the examina-
tion of the cross-subject EEG classification. First, ten
FLD classifiers are built by learning from the first EEG
session (or the second session depending on two-fold
cross validation) of the ten subjects. After that, the ten
classifiers are applied to classify the second EEG ses-
sion of the ten subjects, respectively. Table I shows
the accuracy of the subject-specific (diagonal items) and
cross-subject (non-diagonal items) classifiers. Obvi-
ously, the cross-subject accuracy is significantly lower
than the subject-specific accuracy, indicating the EEG
variation across subjects.

3.2 Boosting Classification Technique

The proposed technique has also been tested. First,
ten classifiers are built as described in the last subsec-
tion. The boosted classifier accuracy for each subject
is then evaluated by weighting the nine weak classifiers
learned from EEG of the other nine subjects.

The solid and dashed graphs in Fig. 4 show the
accuracy of the subject-specific and the boosted clas-
sifiers when the round number is increased from 1 to
10. As Fig. 4 shows, the boosted classifier greatly
outperforms the subject-specific classifiers when the
round number is small. Besides, the boosted classi-
fier achieves roughly the same accuracy as the subject-
specific classifiers at the tenth round, indicating its po-
tential to remove the complicated and tedious training
procedure. The higher accuracy of the boosted classifer



Figure 4. Accuracy of SSCMs and boosted classification models.

(at the lower number of round) can be explained by the
heavy noise, which is suppressed by the boosted classi-
fier through the weighting of multiple weak classifiers.

4 Conclusions

This paper presents a subject-independent EEG clas-
sification technique that boosts a committee of week
classifiers learned from EEG of a pool subjects. The
proposed technique weights the weak classifiers based
on their classification confidence. Experiments over ten
subjects show that the proposed technique even outper-
forms the subject-specific classifiers, hence removing
the complicated and tedious training procedure.
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