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Abstract— This paper presents an unsupervised subject mod-
eling technique and its application to a P300-based word speller.
Due to EEG variations across subjects, a special training
procedure is required to learn a subject-specific classification
model (SSCM). To deal with the inter-subject variation, we first
study a subject independent classification model (SICM) that is
learned from EEG of a pool of subjects. Next we further adapt
the SICM by learning from a subset of the pooled EEG that is
automatically selected based on its similarity to the EEG of a
new subject. Experiments over ten healthy subjects show that
the SICM learned from all pooled EEG outperforms the cross-
subject models greatly. More importantly, the adapted SICM
achieves virtually the same performance as the SSCM, hence
removing the complicated and tedious training procedure.

I. INTRODUCTION

Brain computer interface (BCI) [1], [2] is a direct com-

munication pathway between a human brain and an external

device. As it directly reads electrical signatures of brain’s

activity and its responses to external stimuli, it is particularly

useful for those paralyzed people who suffer from severe

neuromuscular disorders and cannot communicate through

the normal neuromuscular pathway.

P300 is an endogenous, positive polarity component of

the event-related brain potential (ERP) and has been widely

used for the purpose of brain computer interface. Farwell and

Donchin [3] first demonstrate the use of P300 in a so-called

oddball paradigm. In the paradigm, the computer displays

a matrix of cells and flashes each row and column shown

in Fig. 1 alternately in a random order. A subject trying to

input a letter needs to focus on the letter for a short while,

meanwhile a P300 ERP will be elicited when the row or the

column of the focused letter flashes. The elicited P300 can

then be identified by certain signal processing and machine

learning algorithms [4], [5].

Many studies [8], [9] have shown that large variations

exist among P300 of different subjects. In particular, the

P300 amplitude and latency vary among both normal and

clinical populations shown in Fig. 2. Consequently, P300

models learned from one subject usually would not apply

well to another subject. And most P300-based BCIs require

a special training procedure to first build a subject-specific

classification model (SSCM). However, the special training

procedure is usually complicated and tedious, which makes

P300-based BCIs inconvenient for practical uses.

To deal with the EEG variations, we first study a subject-

independent classification model (SICM) that is learned from

a pool of subjects. Compared with P300 models learned
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Fig. 1. Interface of the P300-based Word Speller.

from one specific subject, the SICM learned from a pool of

subjects should be more capable of capturing the common

P300 characteristics and so has higher potential to classify

EEG of a new subject without the special training.

Next, we further study to extract a subset of the pooled

EEG that has similar P300 pattern to EEG of a new subject.

Particularly, a SSCM is first built based on the EEG segment

recorded from the new subject online and the corresponding

labels predicted by the SICM (learned from all pooled EEG

offline). The pooled EEG is then classified by the newly

built SSCM and a subset with high similarity (to EEG of the

new subject) is selected based on the SSCM classification

confidence. After that, the SICM is rebuilt by learning from

the subset of pooled EEG, which is further applied to classify

the ensuing EEG of the new subject. Such process iterates

until certain amount of EEG of the new subject is classified

and incorporated into the SICM adaptation.

II. PROPOSED EEG CLASSIFICATION TECHNIQUES

This section presents our proposed EEG classification

technique. In particular, we will divide this section into four

subsections, which deal with EEG preprocessing, EEG clas-

sification by using linear discriminant, subject-independent

EEG classification, and SICM adaptation, respectively.

A. EEG Preprocessing

The collected EEG Ec×s (c and s stand for the number of

channels and the number of samples within each channel,

respectively) needs to be preprocessed before its classifica-

tion. In the proposed technique, a low-pass filtering of EEG

is first implemented by using an optimal cutoff frequency

[6]. The filtered EEG is then down-sampled to reduce the

data size and speed up the ensuing processing.
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Fig. 2. P300 ERP of ten healthy subjects: P300 is measured at PO6
and averaged over 820 stimulations (41 characters×10 rounds×2 flashes
including one row flash and one column flash that specify the focused cell).

Ocular artifacts are then removed by treating the sampled

EEG E(n) as a linear superposition of the measured EOG

u(n) and the real EEG w(n). We remove the EOG by using

the difference model reported in [5] as follows:

E(n) = E(n′)+
N

∑
i=1

bi(ui(n)−ui(n
′))+wi(n)−wi(n

′) (1)

where n′ = n − 1 and N is the number of sites at which

the EOG measurement is done, two in our setup. Since

the dynamic range of w is small in comparison to u, the

propagation constants bi can be computed through the least

square minimization.

B. EEG Classification

Under the oddball paradigm, 12 flashes intensify in a

random order where one row flash and one column flash

specifying the focused cell have P300 and the rest has no

P300. Therefore, the EEG classification is actually a two-

class classification problem. To facilitate the ensuing EEG

classification, we first concatenate the EEG Ec×s collected

within an epoch into a feature vector as follows:

x = [x(1)T , ...,x(i)T , ...,x(c)T ]T (2)

where x(i) refers to the EEG collected from the i-th selected

channel (composed of s EEG signals sampled between 150

ms and 500 ms after each flash) and the parameter c refers

to the number of channels selected (i.e. 8 in our setup).

Different EEG classification techniques have been re-

ported, among which supported vector machine (SVM) and

Fisher’s linear discriminant (FLD) outperform others as

evaluated in [7]. We identify P300 by using FLD because

of its lower computational cost. Particularly, FLD seeks to

determine a linear combination of the feature vector x that

maximizes the ratio of its between-classes variance to its

within-classes variance as follows:

argmax
w

J(w) =
wT Sbw

wT Sww
(3)

where Sb and Sw correspond to the between-classes scatter

matrix and within-classes scatter matrix, respectively.

The quantity J(w) in Equation (3) is well known as the

generalized Rayleight quotient where the projection w can

be determined as follows [10]:

w = S−1
w (µ1 −µ2) (4)

where µ1 and µ2 refer to the mean of the EEG feature

vectors with and without P300, respectively. For the two-

class classification case, the linear projection w can be

similarly derived by the discriminant function that maximizes

the posterior probability as follows:

gi(x) = ln p(θi|x) = ln p(x|θi)+ ln p(θi), i = 1,2 (5)

where p(θi), i = 1,2 in Equation (5) refers to a priori,

which is equal to 1/6 or 5/6, respectively, according to the

protocol of the P300-based word speller. The parameters

of the p(x|θi), i = 1,2 can be estimated from the converted

training feature vector x. P300 can thus be identified by the

row and the column that have the maximum P300 posterior

probability averaged over multiple rounds of flashing (which

are normally required by most P300-based word speller).

C. Subject-Independent EEG Classification

The subject-independent EEG classification is based on

the observation that different subjects usually share common

characteristics within their P300. Therefore, compared with

a P300 model learned from one specific subject, a SICM

learned from a pool of subjects should be more capable of

capturing the common P300 characteristics and classifying

EEG of a new subject without the special training.

To build a subject-independent model, EEG of a pool of

subjects specified below is required:

X =
{

[xT
s1, ls1], ..., [x

T
si, lsi], ..., [x

T
sn, lsi]

}

(6)

where xsi and lsi refer to the feature vectors converted

from EEG of the i-th subject and the corresponding labels,

respectively. With the X , the Gaussian distribution p(x|θi) in

Equation (5) can be estimated and a SICM can then be built.

Experiments (to be discussed in Section III) show that the

SICM outperforms the cross-subject models greatly.

D. Subject-Independent Model Adaptation

Though the SICM described in the last subsection is

capable of identifying P300 of a new subject with no special

training, the classification accuracy is normally much lower

than the SSCM accuracy. The low accuracy can be explained

by the fact that the SICM captures the common instead of

the subject-specific P300 characteristics.

We capture subject-specific EEG characteristics through

the selection of a subset of the pooled EEG that has similar

P300 pattern as that of a new subject. Algorithm I below

describes the online SICM adaptation process step by step:

Algorithm I

Input: Labeled EEG E from a pool of subjects and a new

subject to be studied.

Step 1: Preprocess E and convert it into a training set X as

specified in Equation (6).

Step 2: Build a SICM by learning from the X .
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Step 3: Preprocess and convert the initial EEG segment of

the new subject (recorded online) into feature vectors x1.

Then classify x1 by using the SICM built in Step 2.

Step 4: Build a SSCM based on the x1 and the corresponding

labels l1 that are predicted by the SICM in Step 3.

Step 5: Classify the X by using the SSCM inversely and

determine a subset of X that has similar P300 pattern to

that of the x1 (based on the SSCM classification confidence).

Rebuild the SICM by learning from the subjset of X .

Step 6: Preprocess and convert the ensuing EEG segments

of the new subject into feature vectors xi. Then classify the

subject EEG x1 · · ·xi by using the rebuilt SICM.

Step 7: Rebuild the SSCM by using all subject EEG x1, ...,xi

and the corresponding labels predicted by the SICM.

Step 8: Repeat Steps 5-7 until the certain amount of EEG

of the new subject has been classified.

In the proposed technique, the similarity between EEG

of the new subject and pooled EEG is measured by the

confidence of the SSCM when it is applied to classify the

pooled EEG inversely. Besides, the SSCM confidence is

evaluated based on the classification consistency as follows:

Ci = P(
R

∑
j=1

MAX(Φ j))−SP(
R

∑
j=1

MAX(Φ j)) (7)

where R is the number of the rounds for the spelling of a

character and Φi is a 12-dimensional vector storing the P300

probability of the 12 flashing within j-th round. The function

MAX() returns a 12-dimensional vector, which sets the row

and the column with the maximum P300 posterior probability

at 1 and the rest at 0. The functions P()/SP() return the sum

of the frequency of the peak/second-peak row and column

accumulated over R rounds of stimulation.

The evaluation of the confidence by the classification

consistency is based on the observation that EEG with P300

usually shows specific P300 pattern but those without P300

is much more random. Therefore, if a model identifies one

specific row/column more consistently over multiple rounds

of stimulation and the frequency of the peak row/column is

much higher than that of the second-peak row/column, the

model should be more confident. In our implemented system,

the subset of the pooled EEG is selected as the first 50% most

confident among those correctly classified by the SSCM.

III. EXPERIMENTAL RESULTS

We evaluate the proposed technique based on EEG col-

lected from ten healthy subjects. Particularly, two EEG

sessions are collected from each subject by spelling 41

characters [5] (THE QUICK BROWN FOX JUMPS OVER

LAZY DOG 246138 579) in two different orders. Ten rounds

of flashes are implemented for the spelling of each character

and within each epoch, EEG between 150 ms and 500

ms after each flash are used for the EEG classification. In

addition, we select 8 channels (Fz Cz P3 Pz P4 PO7 PO8

OZ) and set the sampling rate at 250.

Fig. 3. Accuracy of SSCMs (blue bars one the left), pooled SICMs (green
bars in the middle), and cross-subject models (red bars on the right.

A. P300 Variability

We study the P300 variability through the comparison of

the subject-specific and cross-subject EEG classification. Ten

SSCMs are first built by learning from the first EEG session

(or the second EEG session for two-fold cross validation) of

the ten subjects. The ten subject models are then applied

to classify the second EEG session of the ten subjects,

respectively. The blue and green bars in Fig. 3 show the

SSCM accuracy and the cross-subject model accuracy aver-

agged over the nine cross-subject models (learned from the

other nine subjects). Obviously, the cross-subject accuracy is

significantly lower than the SSCM accuracy, indicating the

EEG variations across subjects.

B. Subject-Independent EEG Classification

The subject-independent EEG classification has also been

tested. Particularly, for each of the ten healthy subjects, a

SICM is first built by learning from the first EEG session

of the other nine subjects (or the second session for two-

fold cross validation). The SICM is then applied to classify

second EEG session of the i-th subject under study.

The red bar in Fig. 3 shows the SICM accuracy. As Fig. 3

shows, the SICM accuracy is generally much higher than

the cross-subject accuracy. Such results indicate that the

combination of EEG of a pool of subjects does improve

the EEG classification greatly. On the other hand, the SICM

accuracy is still lower than the SSCM accuracy, which

concurrently indicates the limitation of the SICM, i.e. it does

not capture the subject-specific P300 characteristics.

C. Subject-Independent Model Adaptation

The proposed SICM adaptation technique has been evalu-

ated as well. To show the effectiveness of the proposed tech-

nique, we simply test one iteration of the SICM rebuilding

as described in Algorithm I. Particularly, one EEG session

of each of the ten subjects is first classified by the pooled

SICM learned from EEG of the other nine subjects. A SSCM

is then built and applied to classify pooled EEG of the other
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Fig. 4. Accuracy of the pooled SICMs (dashed graph), SSCMs (solid light dark graph) and adapted SICMs (solid heavy dark graph).

nine subjects inversely. A subset of the pooled EEG is then

selected as described in Section II. D to rebuild the SICM,

which is further applied to classify the other EEG session of

the subject under study for the accuracy evaluation.

Fig. 4 shows the two-fold cross validation accuracy of

the pooled SICMs (learned from all pooled EEG), adapted

SICMs, and the SSCMs when the round number increase

from 1 to 10. As Fig. 4 shows, both the SSCMs and the

adapted SICMs significantly outperform the pooled SICM

(except for the third subject whose SSCM accuracy and

SICM accuracy are rough the same). At the same time, the

accuracy of the adapted SICM is very close to that of the

SSCM, indicating its potential to remove the complicated

and tedious training procedure.

Several issues need to be further investigated. First, the

proposed technique is tested over ten healthy adult subjects.

But for subjects of different categories such as children and

patients, larger P300 variation can be expected, which may

affect the performance of the proposed technique. Second,

the proposed technique is just tested over a P300-based word

speller. But it has potential to be applied to other more

challenging BCI tasks such as motor imagery. We will study

these two issues in our future work.

IV. CONCLUSIONS

This paper presents an unsupervised EEG classification

technique and its application to a P300-based word speller.

In the proposed technique, a SICM is first learned from EEG

of a pool of subject. Next, the SICM is recursively updated

by learning from those pooled EEG with high similarity to

the EEG of the new subject. Experiments over ten healthy

subjects show that the adapted SICM is capable of achieving

virtually the same performance as the SSCM, hence remov-

ing the complicated and tedious training procedure.
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