
 

  

Abstract—This paper investigates the classification of 
voluntary facial expressions from electroencephalogram (EEG) 
and electromyogram (EMG) signals using the Filter Bank 
Common Spatial Pattern (FBCSP) algorithm. The FBCSP 
algorithm is an autonomous and effective machine learning 
approach for classifying two classes of EEG measurements in 
motor imagery-based Brain Computer Interface (BCI). 
However, the problem of facial expression recognition typically 
involves more than just two classes of measurements. Hence, 
this paper proposes an extension of FBCSP to the multiclass 
paradigm using a decision threshold-based classifier for 
classifying facial expressions from EEG and EMG 
measurements. A study is conducted using the proposed 
Multiclass FBCSP on 4 subjects who performed 6 different 
facial expressions. The results show that the Multiclass FBCSP 
is effective in classifying multiple facial expressions from the 
EEG and EMG measurements. 

I. INTRODUCTION 
rain signals can be acquired by scalp-recorded 
electroencephalogram (EEG) non-invasively from a 

subject. Over the past 20 years, EEG and other brain signals 
have been applied in  augmentatative communication and 
control technology for those with severe neuromuscular 
disorders such as amyotrophic lateral sclerosis and stroke 
[1]. In a Brain-Computer Interface (BCI), these brain signals 
are directly translated into commands for controlling an 
external device[1]. Recently, increased research efforts have 
widen the potential applications of decoding these brain 
signals for gaming, digital entertainment [2], as well as post-
stroke rehabilitation [3]. 

This paper extends the translation of EEG and 
electromyogram (EMG) measurements to the recognition of 
facial expressions. Facial expressions are an effective 
communication means for people to convey emotions [4]. 
For example, stroke patients suffer facial paralysis because 
neurological damages affect regions of the brain that are 
involved in the production and regulation of these facial 
expressions [5]. Restoring the capability of facial 
expressions for these patients is important because 
depression symptoms have been reported in 65% of patients 
with facial neuromotor disorders, an incidence that is 3 to 5 
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times higher than the general population [4]. Due to the 
neuroplasticity nature of the brain, neuromuscular facial 
retraining techniques [6] used with EMG biofeedback can 
help improve the patients’ facial functions [7]. In another 
example, facial expressions elicited from the user can be 
used to control a virtual avatar in a computer game 
(http://www.emotiv.com) or used to evaluate how immersive 
the game is [8]. Thus, the effective recognition of multiple 
facial expressions using EEG and EMG measurements has a 
strong potential for facial function rehabilitation as well as 
digital entertainment. 

The Common Spatial Pattern (CSP) algorithm was first 
introduced into the field of EEG analysis to classify 
abnormal from normal EEG, to extract the components from 
abnormal EEG, and to localize the sources [9]. It is also 
highly effective in constructing optimal spatial filters for 
discriminating two classes of EEG measurements in a motor 
imagery-based BCI [10]. However, the effectiveness of the 
CSP algorithm is highly dependent on the operational 
frequency band due to the huge inter-subject variability of 
the brain signals [11]. To address this issue, the Filter Bank 
Common Spatial Pattern (FBCSP) algorithm [12] is 
developed to perform autonomous selection of key 
temporal-spatial discriminative EEG characteristics. 
However, the application of FBCSP is still limited to two 
classes of EEG measurements. Moreover, the problem of 
facial expression recognition typically involves more than 
two types of facial expressions. Therefore, an extension of 
the FBCSP algorithm to the multiclass paradigm using a 
decision threshold-based classifier is proposed in this paper.  

The remainder of this paper is organized as follows. 
Section II provides a brief description of the CSP and 
FBCSP algorithms used in this paper. Section III describes 
the classifier used in FBCSP. Section IV presents the 
proposed multiclass extension to FBCSP using a decision 
threshold-based classifier. Section V describes the 
experimental protocol of the study and section presents the 
results. Section VI concludes this paper with a discussion on 
the results. 

II. FILTER BANK COMMON SPATIAL PATTERN (FBCSP) 
The Common Spatial Pattern (CSP) algorithm is highly 
successful in computing spatial filters for EEG 
measurements. The objective of spatial filtering employing 
the CSP algorithm is to compute the features whose 
variances are optimal for discriminating two classes of EEG 
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measurements.  
The method employed by the CSP algorithm is based on 

the simultaneous diagonalization of two covariance 
matrices. In summary, the spatially filtered signal Z of a 
single trial EEG E is given as 
 =Z WE . (1) 
where E is an N×T matrix of EEG data for a single trial; N is 
the number of channels; T is the number of measurement 
samples per channel; and W is the CSP projection matrix. 
The rows of W are the stationary spatial filters and the 
columns of W-1 are the common spatial patterns.  

The spatial filtered signal Z given in (1) maximizes the 
differences in the variance of the two classes of EEG 
measurements. However, the variances of only a small 
number m of the spatial filtered signal are generally used as 
features for classification [10] . The m first and last rows of 
Z i.e. Zp, p∈{1..2m} form the feature vector Xp given in (2) 
as inputs to a classifier. 
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To address the problem of selecting the operational 
subject-specific frequency band for the CSP algorithm, the 
FBCSP algorithm [12] is developed. The architecture of 
FBCSP is shown in Fig. 1. 
 

 
Fig. 1. Architecture of the FBCSP algorithm adapted from [12] 
 

FBCSP comprises four stages: frequency filtering, spatial 
filtering, feature selection and classification. The first stage 
employs a zero-phase Chebyshev II filter bank that bandpass 
filters the EEG measurements into multiple bands. The 
second stage performs spatial filtering on each of these 
bands using the CSP algorithm. Thus, each pair of bandpass 
and spatial filter yields CSP features that are specific to the 
frequency range of the bandpass filter. The third stage 
employs a feature selection algorithm to select the 
discriminative CSP features from the filter bank. The fourth 
stage employs a classification algorithm to model and 
classify the selected CSP features. These four stages of EEG 
signal processing perform an autonomous selection of key 
temporal-spatial discriminative EEG characteristics using a 
machine learning approach. In this paper, the Mutual 
Information Best Individual Feature (MIBIF) algorithm and 
the Naïve Bayes Parzen Window (NBPW) [12] are used to 
select and classify the multiband CSP features respectively. 

III. NAÏVE BAYES PARZEN WINDOW 
The Naïve Bayesian Parzen Window (NBPW) classifier [13] 

estimates p(X|ω) and P(ω) from training data samples and 
predicts the class ω with the highest posterior probability 
p(ω|X) using Bayes rule 
 ( ) ( ) ( ) ( )| |p p P pω ω ω=X X X , (3) 
where X={X1,X2,…,Xd} is a data sample with d features. The 
computation of p(ω|X) is rendered feasible by a naïve 
assumption that all the features X1,X2,…,Xd are conditionally 
independent given class ω in 
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The NBPW classifier employs Parzen Window to 
estimate the conditional probability p(Xi|ω) 
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where ω=1,…,Nω; nω is the number of data samples 
belonging to class ω; Iω is the set of indices of the data 
samples belonging to class ω; and φ is a smoothing kernel 
function with a smoothing parameter h [13].  

IV. MULTICLASS FBCSP  
The CSP algorithm employed in FBCSP computes optimal 
features for binary classification [9]. However, for 
multiclass classification, there is no canonical method in 
computing the relevant CSP patterns [14]. Several 
approaches have been proposed to extend the CSP algorithm 
to multiclass paradigm, namely, using CSP within the 
classifier, One Versus the Rest CSP (OVR), and 
simultaneous diagonalization [9],[14]. The proposed 
Multiclass FBCSP algorithm employs a divide-and-conquer 
approach that is similar to OVR whereby the multiclass 
problem is reduced into a series of binary classifiers. This 
divide-and-conquer approach is described as follows: 

A. Divide-and-Conquer approach 
Given C classes, construct C-1 binary classifiers. The 

classification rule for the kth classifier is given by 
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where , 'k k ∈ Ω ; { }1, 2...,CΩ ∈ ; and ( )| 0kp ω ′ =X  if 

k ′ = ∅ . 
This approach computes CSP features to discriminate 

class ωk from ωk’. This approach is employed instead of 
using pair wise classifiers because fewer patterns are chosen 
and no advantage was observed in the latter [14]. In this 
approach, the design of the first classifier is critical because 
the errors that propagate to the subsequent (C-1-k) classifiers 
will impact the overall classification accuracy. A method of 
determining which class of data to classify first can be 
performed using the one-against-all cross-validation 
accuracies whereby ωk is classified against the others. 
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B. Decision threshold-based Classification 
This paper investigates whether classification accuracies 

can be improved in the Multiclass FBCSP algorithm with 
decision threshold-based classifiers. A decision threshold-
based classifier compares the classifier estimates of the 
posterior probabilities with a specified threshold [15]. For a 
binary classifier,  
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where t is a constant value for the threshold between 0 and 1  
Without varying the decision thresholds, t = 0.5 by 

default. The thresholds are computed in the following steps: 
• Step 1: Set all the decision thresholds to 0.5 
 0.5kt =  (8) 
where 1,..., 1k C= −  
• Step 2: k = 1, Assign tk to i if 
 ( ) ( ) for all j i g i g j> ≠  (9) 
where { }, 0.5 : 0.05 : 0.95i j ∈  and g(i) is the training set 

accuracy with threshold i from 10×10-fold cross-validation 
results of the Multiclass FBCSP. This is to avoid a biased 
selection of tk 
• Step 3: k → k+1, repeat Step 2 until k = C - 1 

V. EXPERIMENTAL RESULTS 
4 healthy subjects were recruited for this study. The data is 
collected with approval from the Ethics Approval Board. 
360 trials of EEG/EMG data were recorded using Neuroscan 
NuAmps 40-channel Quik-Cap. Each subject performed 6 
types of facial expressions: Smile, Straight, Wince, Agape, 
Stern and Frown. These expressions are performed similar 
to the experiment performed in [16]. These facial 
expressions typically convey happy, calm, disgust, shock, 
angry and sad respectively. In [17], being happy is neither 
necessary nor sufficient for smiling. Thus the former group 
of names is used instead of the latter to emphasize the 
physical imitation of facial expressions rather than emotions. 
Fig. 2 shows the visual cues presented to the subjects. 
 

SmileSmile StraightStraight FrownFrownWinceWince AgapeAgape SternStern . 
Fig. 2. Visual cues for the facial expressions exhibited during the data 
collection. Each trial begins with a 2s preparation period where a fixation 
cross appears on a computer screen. Next, the visual cue instructs the 
subject to perform the facial expression for 4s. Finally, the subject rests for 
4s in preparation for the next trial.  
 

Current literature suggests that a subject takes about 0.5s 
to mimic the facial expression seen in static images [18]. 
Thus, the EEG/EMG data of 0.5 to 2.5 seconds from the 
onset of the visual cue for each trial is analyzed by 
extracting the feature vectors given in (2). The EEG/EMG 
data is extracted from 34 electrodes, namely, Fp1, Fp2, F7, 

F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, 
T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, 
O2, FT9, FT10, PO1, and PO2. These 34 electrodes record 
both EEG and EMG data simultaneously. 

The order of classification in the Multiclass FBCSP 
algorithm is determined from the one-against-all 10×10-fold 
cross-validation accuracies. Smile is classified first, followed 
by Straight, Wince, Agape, Stern and finally Frown. Fig. 3 
shows the results of unbiased 10×10-fold cross-validations 
performed using the Multiclass FBCSP. The results from 34 
electrodes yield a test accuracy of 86.0±0.80%. 
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Fig. 3. Experimental results of using the proposed Multiclass FBCSP 
algorithm for 4 subjects performing 6 facial expressions. The vertical bars 
show the test accuracies of 10×10-fold cross-validations performed using 
the proposed Multiclass FBCSP on the EEG/ EMG measurements. The 
vertical lines show the standard deviations of the test accuracies. Results are 
obtained using EEG/EMG measurements from 34 electrodes and 6 frontal 
electrodes. ‘NoThreshold’ and ‘Threshold’ results are obtained without 
using and with using decision threshold-based classification respectively. 
 

As a reduced set of electrodes is desired for a headband 
implementation of the BCI, the results from 6 frontal 
electrodes (Fp1, Fp2, F7, F8, FT9 and FT10) are also 
presented in Fig. 3. The results yield a significant decrease 
in accuracy from 86.0±0.80% to 78.5±0.91% (p-value from 
paired samples t-test = 0.0072). These results are significant 
because humans can discern 6 basic facial expressions with 
an accuracy of 70% to 98%, and image/video-based 
detection systems achieve an accuracy of 64% to 98% from 
classifying 3 to 7 facial expressions by 5 to 40 subjects [19].  

The results for the decision threshold based-classifiers are 
also shown in Fig. 3. The results from 6 electrodes yield a 
significant improvement from 78.5±0.91% to 81.8±0.87% 
(p-value = 0.0096). The results from 34 electrodes yield a 
marginal improvement from 86.00±0.80% to 87.1±0.76% 
(p-value = 0.1096). Table 1 shows the confusion matrices of 
the cross-validations accuracy for 34 electrodes and 
compares between with and without the decision threshold-
based classifiers. Although the classification accuracy of 
Smile is decreased slightly from 97.42% to 93.54%, the 
classification accuracies of Stern and Frown show 
significant improvement from 83.21% to 88.71% and from 
66.71% to 77.29% respectively when the decision threshold-
based classifiers are employed. 
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TABLE 1 
THE CONFUSION MATRICES AVERAGED OVER FOUR SUBJECTS, USING 34 ELECTRODES WITH DECISION THRESHOLDS AND WITHOUT DECISION 

THRESHOLDS. THE MEAN ACCURACY RESULTS FOR THE 10X10-FOLD CROSS VALIDATION ACCURACIES FOR EACH CLASS IS SHOWN. 

Smile Straight Wince Agape Stern Frown Smile Straight Wince Agape Stern Frown
Smile 93.54 0.75 0.71 4.29 0.04 0.67 97.42 0.96 0.17 1.04 0.00 0.42
Straight 0.96 92.54 0.00 0.13 2.67 3.71 2.33 93.67 0.00 0.00 1.46 2.54
Wince 4.63 0.54 84.38 3.08 2.83 4.54 5.54 0.75 85.63 2.83 1.83 3.42
Agape 3.54 0.08 0.50 88.04 1.38 6.46 6.92 0.08 0.21 89.38 1.33 2.08
Stern 0.00 2.67 3.67 1.21 88.71 3.75 0.04 5.00 7.00 1.29 83.21 3.46
Frown 0.38 5.63 4.00 8.04 4.67 77.29 1.04 6.83 10.17 10.88 4.38 66.71

Predicted Class
With Varying Decision Threshold Without Varying Decision Threshold

Tr
ue

 C
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ss

VI. CONCLUSIONS 
This paper investigates the classification of 6 different facial 
expressions using EEG and EMG measurements via a 
proposed extension of the Filter Bank Common Spatial 
Patterns (FBCSP) algorithm to the multiclass paradigm. The 
study is performed on 4 healthy subjects. The results show 
the Multiclass FBCSP effectively classifies 6 different facial 
expressions from EEG and EMG measurements. The results 
also demonstrate an improvement in the accuracy of the 
Multiclass FBCSP using the decision threshold-based 
classifier.  

The classification accuracy of the proposed Multiclass 
FBCSP on a reduced set of electrodes from 34 to 6 is also 
investigated. The result from using 6 frontal electrodes 
yields a significant decrease in accuracy compared against 
34 electrodes. From the concept of the human homunculus 
[5],[20], there is a motor representation of the face in the 
motor cortex. Evidence in the literature using functional 
Magnetic Resonance Imaging (fMRI) also show that the 
premotor cortex is activated during voluntary imitation 
[21],[22] or imagination [23] of facial expressions. The 
decrease in accuracy result suggests that there are relevant 
signals from the premotor cortex and motor cortex related to 
the imitation of voluntary facial expressions. Future research 
works include an optimization of the number and placement 
of electrodes, and a more extensive study into the 
performance of combining classifiers in the multiclass 
paradigm. 
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