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Abstract—This paper describes an initial study of non-invasive 
electroencephalograph (EEG)-based Brain Computer Interface 
(BCI) application on Stroke patients. The purpose of this study is 
to combine BCI and robotic arm for after-stroke rehabilitation 
exercises. A clinically-proven MANUS robotic rehabilitation shell 
is integrated with the NeuroComm BCI platform, whereby the 
robotic control mechanism is complemented by the motor 
imagery of the patient. 8 hemiparetic stroke patients with varying 
degrees of paralysis on the unilateral upper extremity are 
recruited for this study. The results show that most BCI-naïve 
hemiparetic stroke patients are capable of operating the BCI 
effectively, hence motivates further clinical studies on the extent 
of how BCI-based robotic rehabilitation are comparable with the 
control group that uses only robotic rehabilitation. 

Keywords-non-invasive BCI; stroke rehabilitation; robot-aided 
rehabilitation 

I.  INTRODUCTION 
Stroke is one of the major cause of severe disabilities in the 

developed world [1]. An estimated 75% of people who have 
had a stroke will survive for at least a year; about one third of 
them will have moderate to severe disabilities in movement, 
speech, concentration, and cognition [1]. Stroke adversely 
affects the daily functioning of the patients in the workplace, 
home, and community. With effective rehabilitation, most 
patients could partially regain their motor control and continue 
their activities of daily living (ADL). 

In recent years, there is a rapid growth in the use of robots 
for rehabilitation treatments. As compared to the traditional 
manually-assisted-movement-treatment applied by therapist(s), 
robotic rehabilitation is less labor-intensive, allows intense 
repetitive exercise and can track the patient's progress and 
make recommendations to the human therapist whenever 
necessary. Studies in [2],[3] show positive results of robot-
assisted rehabilitation exercises that helps to promote motor 
function recovery. 

On the other front, we see rapid developments in Brain-
Computer Interface (BCI) techniques which assist paralyzed or 
locked-in patients communicate with the outside world; control 
devices such as television and motorized wheelchair. In 
particular, two studies have shown the possibilities of using 
BCI to control Functional Electric Simulation (FES) system for 
assistive hand movements. In the first study [4], a tetraplegic 
patient will try to grasp a glass of water to drink using their 

BCI-FES system. The second study [5] proposes a BCI-FES 
system for stroke patients’ arm flexion and extension exercises. 
Both systems employ the use of motor imagery techniques. 

The adult brain is capable of reorganizing itself after 
suffering a stroke because the healthy parts of the brain learn 
and take over the functions previously carried out by the 
damaged regions of the brain. The brain’s reorganizing 
capability is commonly known as Neuro-plasticity [6] which 
can be seen as the moving of the position of a given function 
from one location to another in the brain from repeated 
learning. Furthermore, several studies [7],[8] have shown that 
distinct mental processes related to movement such as Event-
Related Desynchronization (ERD) / Synchronization (ERS) are 
detectable for both real and imagined motor activity (left hand, 
right hand and legs) on healthy subjects [9]. Since stroke 
patients suffer from neurological damage, the portion of the 
brain that is responsible for generating ERD/ERS could be 
compromised. 

In this paper, we explore the possibilities of using non-
invasive Brain Computer Interface (BCI) and mechanical 
robotic-aided rehabilitation for upper extremity (UE) weakness 
post-stroke rehabilitation. This technique translates the mental 
imagination of movements acquired by analyzing scalp-
recorded electroencephalogram (EEG) from a stroke patient 
into commands to drive a robotic arm to manipulate the 
affected arm in a similar way as during a physical therapy 
exercise. The incorporation of BCI into robot-assisted 
rehabilitation exercises will guide the user to perform 
rehabilitation exercises effectively. It will motivate the stroke 
patients towards faster recovery, which is vital for effective 
rehabilitation. 

In Section II of this paper, we will provide the system 
design. The implementation of this system will be discussed in 
detail in Section III. Section IV will discuss the results of the 
various experiments using the proposed system. Finally, in 
Section V of this paper, we will conclude our findings. 

II. SYSTEM DESIGN 
The system was build under the NeuroComm [10] platform 

which allows several BCI applications to be included into one 
single system using configuration files. This platform is made 
up of four core modules: The configuration console module 
that enrolls new users maintains user database and manages 
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system configuration settings for BCI applications. The 
application interface module has an application-specific GUI, a 
system control component to control the process flow and a 
device control component to convert process result into device 
control signal. The DAQ module reads raw EEG and stimulus 
data. The signal processing module extracts features from raw 
EEG data and classifies them into control commands. 

Fig. 1. Structure of NeuroComm that consists of four main modules: 
application configuration, application interface, data acquisition and signal 
processing. 

Here the Application Interface and Signal Processing 
modules are customized for this study as described below. 

A. Server and Client Interfaces 
NeuroComm platform is built on Windows system. For this 

project, however, the graphic interface and robot control are 
built under a PC running Linux operating system, as discussed 
in the following Experiment Setup section. Therefore, the 
Application Interface module is separated into two parts and a 
TCP/IP based server/client mechanism is used for 
communication between them, as shown in Fig 1. The Client 
Interface part including application GUI and Device Control is 
running on Linux PC and the Server interface part is running 
on Windows PC. 

B. Model training and Classification 
The Common Spatial Pattern (CSP) algorithm [11],[12] is 

highly effective in constructing optimal spatial filters that 
discriminates two classes of EEG measurements. However, the 
CSP algorithm is highly dependent on the operational 
frequency band and requires setting a broad frequency range to 
manually select a subject-specific frequency range [13],[14]. 
Recently, the Filter Bank Common Spatial Pattern (FBCSP) 
algorithm [15] is developed to perform autonomous selection 
of operational frequency band that represents key temporal-
spatial discriminative EEG characteristics and is used in this 
project to compute the operational frequency band for 
generating the spatial patterns (see Fig. 2).  

Different feature selection and classification algorithms for 
Motor-Imagery BCI have been analysed ([15]). Based on 
experimenting results, the Mutual Information Best Individual 
Feature (MIBIF) algorithm and the Naïve Bayes Parzen 
Window (NBPW) are used to select and classify the CSP 
features respectively in this study. 

 

Fig. 2. Architecture of the FBCSP algorithm 

III. EXPERIMENT SETUP 
The hardware configuration of the system includes an EEG 

amplifier, a PC running Microsoft® Windows® XP operating 
system, a Linux PC running Linux operating system and a 
robot shell for patient to operate on. The EEG amplifier used is 
Nuamps (http://www.neuroscan.com) with 40 unipolar 
Ag/AgCl electrodes channels, sampling rate of 250Hz, 
resolution of 22 bits, voltage ranges of ±130mv. The real-time 
data collection and BCI analysis system was implemented on 
Windows PC using the NeuroComm platform. Continuous 
EEG was recorded from 27 channels with hardware filtering 
from 0.5 to 50 Hz with the reference point on the nose. 

A. Robotic shell 
The MANUS was selected as the robotic shell to be used 

with the BCI application for upper extremity rehabilitation.  
MANUS [16],[17] is a two degrees-of-freedom, impedance 
control robotic system that provides unrestricted unilateral 
passive and active shoulder and elbow movements in the 
horizontal plane. It is control by a PC running real time Ubuntu 
Linux operation system. 

B. Calibration 

   
 (a) ‘GO’ motor imageries (b) ‘STOP’ motor imageries 

Fig. 3. Screenshot of calibration process  

We have adapted the original clock-game interface used by 
the MANUS to provide the BCI-Manus rehabilitation process 
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(see Fig. 3) with eight black target points on the circumference 
and a black center point. The system will provide the 
instruction for the subject to move by showing a “Go” visual 
stimulus and the target point will turn from black to red. The 
subject is instructed that if he/she sees a “Go” instruction, 
he/she has to imagine that he/she is moving the affected hand 
without actual hand movement (see Fig 3a). On the other hand, 
if the subject sees a “Stop” visual stimulus, he has to imagine 
that he is not moving the affected hand (see Fig 3b).  

For each trial, the time periods of the preparation, action 
and rest stages are 2, 4 and 6 seconds respectively. The subjects 
are advised to minimize any body movement throughout the 
calibration process expect during the rest period indicated by 
the float bar in the center. The calibration process consists of 
160 trials of 80 ‘Go’ and 80 ‘Stop’ motor imagery tasks, in a 
random sequence. The subjects are given 10 minutes rest after 
each 40 trial.  

C. BCI-Manus therapy 
Fig. 4 shows the BCI-Manus therapy in progress whereby 

the left hand of a subject is strapped to a harness attached to the 
robotic shell. The EEG signals are extracted from the scalp via 
the EEG cap worn by the subject. 

 
Fig. 4. The BCI Manus robotic system 

In the modified therapy interface shown in Fig 5, the 
smaller yellow circle represents the current position of the 
robotic arm that holds the patient’s stroke-affected arm. The 
clock-game interface allows the exercising of the upper 
extremity of the subject in eight different directions by a planar 
shoulder and elbow robot. One BCI-Manus therapy session 
consists of a series of 160 BCI-controlled clockwise repetitions 
to each robot target and back to the center point. So, each 
session consist of 320 moves, same as that used in the MANUS 
only therapy session. 

   
(a)   (b) 

Fig. 5. The modified clock-game interface for the BCI-Manus therapy  

During therapy process, if the system detects an “Intention 
to Move” signal, the robotic arm will move the affected arm to 
the respective target (Fig. 6a) and back to the center point (Fig. 
6b). After each move, the patient’s arm will be re-positioned to 
the center position and the total number of successful BCI 
moves will increase by one. 

The system also provides a feedback to the subject through 
the BCI score window on the top left-hand corner of the 
display. The BCI score window is divided into the left and 
right sectors representing the left/right tasks performed by the 
subject. After each move, the classifier will output results 
through five yellow horizontal bars that represent five 
continuous segments of the EEG signal, the longer the bar, the 
higher is the score of corresponding segment. As an example 
provided in Fig. 4, the system correctly classified a move 
intention of the left arm by displaying five horizontal bars on 
the left-hand sector of the BCI score window. Data 
segmentation for the classifier is 500 to 2500 ms after visual 
stimulus cue. 

 

Calibration Accuracy and 12 weeks On-line Accuracy
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Fig. 6. Experimental results on the BCI accuracy collected from 8 hemiparetic stroke patients for Brain-Computer Interface. 
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IV. RESULTS AND DISCUSSION  
Fig 6 shows the accuracy for the 8 patients with each 

patient having 13 colored bars. The first gray ‘Calib’ bar shows 
the test accuracies of 10x10-fold cross-validations performed 
using FBCSP on the EEG data of the patients, the remain 12 
bars show the on-line accuracy for the 12 therapy sessions 
whereby the BCI system correctly detect an “Intention to Move 
his left/right affected hand” signal. 

Fig. 7 shows the calibration accuracy and the mean on-line 
accuracy of the BCI system for the 8 subjects. The result shows 
that six subjects (i.e. P037, P007, P029, P005, P012, and P010) 
achieved high mean on-line accuracies as compared to the 
calibration accuracies.  

B CI  M a nus M e a n On- l i ne  Ac c ur a c y
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Fig. 7. Calibration accuracy and mean on-line accuracy of the 8 hemiparetic 
stroke patients. 

The results show that the average on-line accuracy of the 8 
hemiparetic stroke patients is 76.05±17.63%. Hence this 
indicates that the neurological damage in the hemiparetic 
stroke patients does not significantly affect their capability of 
operating BCI. This result is very encouraging and we will be 
recruiting more subjects for a more comprehensive study. 

V. CONCLUSION 
In this paper, we have investigated the possibility of using 

non-invasive BCI and mechanical robotic-aided rehabilitation 
for upper extremity poststroke rehabilitation. In particular, we 
integrated the NeuroComm BCI platform with a MANUS 
robotic rehabilitation shell and used the motor imagery of the 
patient as the control to drive the robotic arm attached with the 
patient’s paralyzed arm. Initial testing was performed on 8 
hemiparetic stroke patients who undergo a 12 day therapy 
session. The results show that most BCI-naïve hemiparetic 
stroke patients are capable of operating the BCI effectively. 

The method used here is classification of movement 
(imagination) vs. relaxing idle state, using the paralyzed arm. 
Although it is enough for hemiplegic patients to perform 
rehabilitation tasks described in this paper, it would be useful 
and can be a future direction to study multiple class 
classification related to different upper limb moving directions. 
However, our preliminary results are not very positive, only 
marginal differentiation when use 128-channel EEG and 
1000Hz sampling rate.  

Work is currently in progress to reduce the time needed for 
calibration using a semi-supervised machine learning approach 
as well as reducing the number of EEG channels necessary to 

provide accurate classification. We are also looking into 
converting the synchronization motor imagery tasks to be 
asynchronous whereby the subject can intuitively controlled 
the robotic arm without the visual stimulus cues. 
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