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Abstract— A major limitation of current Brain-Computer
Interfaces (BCI) based on Motor Imagery (MI) is that they are
subject-specific BCI, which require data recording and system
training for each new user. This process is time consuming and
inconvenient, especially for casual users or portable BCI with
limited computational resources. In this paper, we explore the
design of a Subject-Independent (SI) MI-based BCI, i.e., a BCI
that can be used immediately by any new user without training
the BCI with the user’s data. This is achieved by training the
BCI on data acquired from several other subjects. In order
to assess the possibility to build such a BCI, we compared
several designs based on different features and classifiers,
on data from 9 subjects. Our results suggested that linear
classifiers were the most appropriate for the design of MI-
based SI-BCI. We also proposed a filter bank common spatial
patterns feature extraction method based on a multi-resolution
frequency decomposition which achieved the highest accuracy.

I. INTRODUCTION

Brain-Computer Interfaces (BCI) are communication sys-
tems which enable users to send commands to computers by
using only their brain activity, this activity being generally
measured by ElectroEncephaloGraphy (EEG) [1]. BCI have
been revealed as a very promising tool for disabled people
[1] as well as for healthy people, e.g., for video games [2].
However, a major limitation of EEG-based BCI systems is
that they must be tuned for each new user [1]. This tuning
requires a lengthy and tedious recording of EEG signals from
the new user, hence preventing immediate use of the BCI.
Ideally, a new user should be able to use the BCI from the
very first time, without training (neither machine nor human
training). Hence, a Subject-Independent (SI) BCI is highly
desirable.

Recently, Lu and Guan have proposed a method to de-
sign a P300-based SI-BCI [3]. Their results suggested that
designing a P300-based SI-BCI was possible as common
features of the P300 were shared by different subjects.
Whether these findings still hold for other brain signals such
as motor imagery (limb movement imagination) is still an
open question. Moreover, the features used in P300-based
BCI are generally the same for all subjects, more precisely
the time course of the EEG signal amplitude. For BCI based
on Motor Imagery (MI), the features are generally Subject-
Specific (SS) spectral and/or spatial information [4][5]. This
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makes the design of a SI-BCI based on MI an even more
challenging task.

This paper explores the design of a SI-BCI based on MI
by training the system on data from multiple users. In this
study, we compared several designs using different features
and classifiers. The remainder of this paper is organized as
follows: Section II describes the different BCI designs that
were studied and compared. Then, Section III presents the
evaluations conducted and Section IV concludes this paper.

II. METHODS

Designing a SI-BCI is rather different from designing
a SS-BCI. Indeed, methods that are efficient for SS-BCI
design may have poor performances for SI-BCI, as they
carry mostly SS information and very few SI information.
Thus, we believe that comparing various kind of features and
classifiers is necessary in order to gather knowledge about
the design of a SI-BCI based on MI. This section describes
the features and classifiers studied as well as the design of a
BCI using only a-priori knowledge and no machine learning,
used as a baseline for comparison.

A. Feature extraction methods

So far, a variety of feature extraction methods have been
used to design BCI [6]. In this paper, we study and compare
several of them, belonging to the most popular and efficient
ones: logarithmic band power, autoregressive coefficients,
power spectral densities, common spatial patterns and filter
bank common spatial patterns.

Logarithmic Band-Power (BP): Computing a BP fea-
ture consists in band-pass filtering the signal in a given
frequency band, squaring it, averaging it over a given time
window and finally log-transforming it [4]. Here we extracted
band power features in the mu (8-13 Hz) and beta (13-30 Hz)
frequency bands, as the power in these two bands is known
to vary according to the MI task performed [4]. To enhance
the results, the EEG signals were re-referenced to Common
Average Reference (CAR) [1] before feature extraction.

AutoRegressive (AR) coefficients: AR methods assume
that a signal can be modeled as a weighted sum of the values
of this signal at previous time steps. The weights in this
weighted sum are the AR coefficients used as features for the
BCI [4][6]. In this study we used a 4th order AR modelling
based on Burg method. Before AR feature extraction, the
signals were spatially filtered using a Surface Laplacian [1].

Power Spectral Densities (PSD): PSD features inform
on the distribution of the power of a signal between the
different frequencies [6]. Here, we computed the PSD values
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using the Welch periodogram method and used as features
the PSD values in each 2 Hz frequency band within the 8-30
Hz band, without overlap between consecutive bands. Before
feature extraction, the signals were re-referenced using CAR.

Common Spatial Patterns (CSP): CSP is based on
the decomposition of the EEG signals into spatial patterns
[7]. Such patterns are selected in order to maximize the
differences between the classes involved once the data have
been projected onto these patterns. It is achieved by jointly
diagonalizing the covariance matrices of the EEG signals
from each class [7]. CSP have proven to be a very efficient
feature extraction method [7]. In this study, we classically
filtered the EEG signals in 8-30 Hz before using the CSP
and we kept only the 3 first pairs of filters [7].

Filter Bank Common Spatial Patterns (FBCSP): The
FBCSP is an extension of the classical CSP [5]. FBCSP first
decomposes the EEG signals into different frequency bands
using a filter bank. Then, a set of CSP filters is created for
each of these frequency bands. Finally, a feature selection
algorithm is used to determine the most discriminant filters
hence created. FBCSP has shown its superiority over other
methods during the last BCI competition [8]. In this study
we used a filter bank which decomposes the signals into 9
bands of 4Hz (4-8 Hz, 8-12 Hz, . . . , 36-40 Hz), created 2
pairs of CSP filter for each frequency band, and selected the
4 most relevant filter pairs using the Mutual Information Best
Individual Feature Selection (MIBIFS) algorithm [5]. These
settings were reported to be the most optimal ones [5][8].

B. Classifiers

Many classifiers can be used to classify EEG features
[9][10]. Among them, we compared the three following al-
gorithms: linear discriminant analysis, quadratic discriminant
analysis and Gaussian mixture model.

Linear Discriminant Analysis (LDA): LDA uses a linear
hyperplane to separate data from two classes [9]. To compute
the best discriminant hyperplane, LDA assumes a Gaussian
distribution of the data, with equal covariance matrices
for both classes. When using LDA, the class assigned to
an unseen feature vector depends on which side of the
hyperplane the vector is.

Quadratic Discriminant Analysis (QDA): Like LDA,
QDA assumes a Gaussian distribution of the data to identify
a decision boundaries between two classes. However, unlike
LDA, QDA does not assume equal covariance matrices for
both classes, which leads to quadratic decision boundaries
[10].

Gaussian Mixture Model (GMM): A GMM classifier
assumes that the data of each class are modeled by a
mixture of several Gaussians [10]. GMM classifies an unseen
feature vector using Bayes’ rule. To identify the mixture
of Gaussians, a first estimate of the Gaussian location was
obtained using K-means clustering, and then optimized using
the Expectation-Maximization (EM) algorithm [10]. We used
3 Gaussians to model each class.

The reason for using such classifiers is that they provide
various degree of non-linearity. Indeed, LDA is a linear clas-

sifier, QDA is non-linear but provides only quadratic decision
boundaries whereas GMM is completely non-linear and can
provide arbitraly complex non-linear decision boundaries.
These properties will enable us to study the impact of non-
linearity on the SI-BCI performances.

C. A-priori-based BCI

From the neurophysiology literature we know that imag-
ining a left-hand movement leads to a decrease of power
in the mu and beta bands over the right motor cortex, and
vice-versa for an imagined movement of the right hand. As
a baseline for comparisons, we also designed a BCI using
no machine learning but only a-priori knowledge on MI as
described above. To do so, we first computed the logarithmic
BP in 8-30 Hz (i.e., mu + beta) for the electrodes CP3,
CP4, C5, C3, C1, C2, C4, C6, FP3, FP4 (i.e., the electrodes
located over the motor cortices). Then, we averaged these BP
values over electrodes CP3, C5, C3, C1 and FP3 (left motor
cortex) on one hand, and over CP4, C2, C4, C6 and FP4
(right motor cortex) on the other hand, hence leading to two
different features. The sign of the difference between these
two features determines the class of the input signal. Indeed,
the difference between these two features indicates the motor
cortex in which the mu and beta power has decreased.

III. EVALUATION
A. EEG data set used

We evaluated the different designs on data set 2a from
BCI competition IV [8]. This data set comprises EEG signals
from 9 subjects who performed left hand, right hand, foot and
tongue MI. For the purpose of this study, only EEG signals
corresponding to left and right hand MI were used. Indeed,
multiclass classification for BCI is another problem, not in
the scope of this paper. This data set comprised a training
set and a testing set for each subject. Both sets contained
72 trials for each class. Each trial had a duration of 7 sec.
Subjects performed MI from time t = 3 sec to t = 7 sec of
each trial.

In this work, we only considered the discrete classification
of the trials, i.e., we assigned a class to each trial and not to
each trial sample. In order to do so, we extracted the features
from the time segment t = 3.5 sec to t = 5.5 sec of each trial,
as this was the segment used by the BCI competition winner
[8]. Before feature extraction, the data of each channel were
centered and divided by the channel standard deviation.

B. BCI considered

Ideally, we would like a SI-BCI to be as good as a SS-BCI.
Although this objective might not be attainable, it is desirable
to compare a new SI-BCI design with the corresponding SS-
BCI in order to assess its efficiency. Thus, in this study, we
compared a SS-BCI and a SI-BCI for each kind of feature
and classifier. For the SS-BCI, the classifier and CSP filters
(if any) were created using the training data of a given subject
S and tested on the testing data of this same subject S. This
corresponds to the design of current BCI systems. For the
SI-BCI, the classifier and CSP filters (if any) were created
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TABLE I
AVERAGE ACCURACY (%) OBTAINED BY EACH CLASSIFIER AND FEATURE EXTRACTION METHOD, FOR BOTH THE SUBJECT-SPECIFIC (SS) AND

SUBJECT-INDEPENDENT (SI) BCI. THE BEST ACCURACY FOR EACH BCI IS DISPLAYED IN BOLD.

Classifier Type CSP FBCSP BP AR PSD Mean A-priori-based BCI
LDA SS-BCI 74.76 81.1 73.77 69.52 68.98 73.63±4.89

SI-BCI 65.12 62.19 67.59 63.19 65.05 64.63±2.07
QDA SS-BCI 73.23 79.94 64.97 63.27 64.97 69.28±7.12 64.2

SI-BCI 61.81 61.27 63.73 57.64 56.56 60.2±3
GMM SS-BCI 71.45 77.24 50.62 61.65 51.31 62.44±11.85

SI-BCI 57.56 61.11 62.11 60.73 55.48 59.4±2.77

using the pooled training data of all subjects expect the data
of a given subject S. Then, the resulting BCI was tested on
the testing data of subject S. In other words, this BCI was
tested on a subject whose training data were not part of the
data used to build the BCI.

C. Comparison of different feature extraction methods and
classifiers

We evaluated the classification accuracy of each feature
extraction method and classifier, for both SS-BCI and SI-
BCI. Results obtained are displayed in Table I. Firstly, results
in Table I showed that the more linear the classifier, the better
the classification accuracy for both SS-BCI and SI-BCI. The
best results were obtained with LDA, which outperformed
QDA, which outperformed GMM. The difference between
the accuracy of LDA and that of QDA and GMM was
statistically significant (p < 0.001 with a paired t-test).
Moreover, the a-piori-based BCI outperformed the QDA and
GMM for SI-BCI design, regardless of the features. This
suggests that a simple classifier such as a linear one is
more robust against subject-to-subject variability than a more
complex, non-linear classifier.

Secondly, the results showed that there exists some com-
mon information on MI among subjects as the accuracy
obtained for the SI-BCI was higher than chance, roughly
60-65 % on average.

Thirdly, results showed that a method which gives very
good results for SS-BCI can have very different perfor-
mances when used for SI-BCI. For instance, when used
with LDA, FBCSP clearly gave the best results for SS-BCI
whereas it gave the worst results for SI-BCI. Its performance
are even lower than that of the a-priori-based BCI that uses
no machine learning. This might suggest that there is a
tradeoff between good performance for SS-BCI and good
performance for SI-BCI. On the other hand, the performances
obtained by the classical CSP and BP, using LDA as the clas-
sifier, are among the best results for both SS-BCI and SI-BCI.
This raises the following question: what made the FBCSP
fail when used in a SI-BCI? If we consider the differences
between CSP and FBCSP, an answer may be: frequencies.
Indeed, the major difference between CSP and FBCSP is
in the frequency decomposition of the EEG signals. CSP
simply filters the signals in a large frequency band (here 8-
30 Hz), whereas FBCSP decomposes the EEG signals into
several narrow frequency bands. BP also decomposes the
EEG signals into relatively large frequency bands (8-13 Hz

and 13-30 Hz). Therefore, signal decomposition into narrow
frequency bands could lead to poor performances for SI-
BCI. We may hypothetize that narrow frequency bands are
not adapted to deal with the subject-to-subject variability
in terms of spectral content. This has motivated the study
presented in the next section.

D. Comparison of different frequency decompositions
In order to assess the impact of the frequency bands used

on BCI performance, we evaluated the FBCSP approach
using the following frequency decompositions:

Default decomposition: The default decomposition used
in FBCSP decomposes the signals into 9 bands of 4 Hz (4-8
Hz, 8-12 Hz, . . . , 36-40 Hz).

6 bands of 5 Hz: The signals are decomposed into larger
bands than the default decomposition, using 6 bands of 5 Hz
(8-13 Hz,13-18 Hz, . . . ,33-38 Hz).

5 bands of 6 Hz: The signals are decomposed into even
larger bands than the previous decomposition, using 5 bands
of 6 Hz (7-13 Hz,13-19 Hz, . . . , 31-37 Hz).

4 bands of 7 Hz: The signals are decomposed into the
largest frequency bands, using 4 bands of 7 Hz (6-13 Hz,
13-20 Hz, 20-27 Hz and 27-34 Hz).

Multi-resolution decomposition: The signals are de-
composed using three sub-decompositions with different
resolutions. The first decomposition corresponds to a coarse
resolution and uses only the 8-30 Hz frequency band, as
in the classical CSP method. The second decomposition
uses a medium resolution which decomposes the signals
into the four standard rhythms: theta (4-7 Hz), mu (8-13
Hz), beta (13-30 Hz) and gamma (30-40 Hz). Finally, the
last decomposition corresponds to a finer resolution as it
decomposes the signals into 5 bands of 6 Hz as described
above. By using several resolutions, we hope to capture
the subject-independent information with low resolutions
and the subject-specific ones with finer resolutions, hence
leading to improved performances. Since this decomposition
leads to a larger number of features, we also compared
the performances of this method while including different
number of features in the feature selection step: 6, 10 and
20 pairs of features.

Performances obtained by the different frequency decom-
positions are displayed in Table II. Results showed that using
larger frequency bands for the filter bank led to better perfor-
mances for SI-BCI, while leaving the SS-BCI performances
almost unchanged. Overall, the best performances were ob-
tained with the Multi-Resolution (MR) decomposition for
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TABLE II
AVERAGE ACCURACY (%) OBTAINED BY EACH CLASSIFIER AND EACH FREQUENCY DECOMPOSITION, FOR BOTH THE SUBJECT-SPECIFIC (SS) AND

THE SUBJECT-INDEPENDENT (SI) BCI. THE BEST ACCURACY FOR EACH BCI IS DISPLAYED IN BOLD.

Classifier Type Default 4 bands 5 bands 6 bands Multi resolution Multi resolution Multi resolution
of 7 Hz of 6 Hz of 5 Hz 6 feature pairs 10 feature pairs 20 feature pairs

LDA SS-BCI 81.1 79.94 81.4 79.94 80.17 80.48 79.94
SI-BCI 62.19 65.35 67.67 66.59 68.52 70.07 70.99

QDA SS-BCI 79.94 79.32 81.56 78.47 80.4 80.94 78.94
SI-BCI 61.27 64.04 67.05 68.52 69.29 66.74 68.06

GMM SS-BCI 77.16 77.24 80.09 77.7 79.63 73.38 60.57
SI-BCI 61.11 64.04 64.27 62.11 63.58 66.13 65.28

each classifier. For the SI-BCI, whatever the number of
features (6, 10 or 20 pairs), the MR FBCSP was significantly
better than the standard FBCSP (p < 0.005 with a paired t-
test). Still for the SI-BCI, using 10 or 20 feature pairs, the
MR FBCSP was also significantly better (p < 0.05) than
BP features which reached the best results in the previous
study (see Section III-C). Using LDA with 20 pairs of
features, MR FBCSP reached an average accuracy of about
71 %, which was the best score among all feature extraction
methods and classifiers. Interestingly enough, when using BP
features extracted from the same frequency bands as those
used in the MR decomposition, rather than from mu and
beta, the accuracy of the resulting SI-BCI remained roughly
unchanged. More precisely, when using all features and the
LDA classifier, the average accuracy was 67.82 % whereas
when using only 100 features (selected using MIBIFS) this
accuracy was 68.82 %. Finally, when using 40 features, i.e.,
as few features as with the FBCSP approach using 20 feature
pairs, the accuracy was 68.6 %.

IV. CONCLUSION AND DISCUSSION

In this paper, we have explored the design of a SI MI-
based BCI, i.e., a BCI that can be used immediately by a
new user without the need of training the BCI with data
from this new user. We compared several designs based on
different feature extraction methods and different classifiers
on EEG data from 9 subjects, available from data set 2a of
BCI competition IV. Results revealed that linear classifiers
were the most appropriate for MI-based SI-BCI design. We
also proposed a FBCSP feature extraction method based on
a MR frequency decomposition which achieved the high-
est accuracy. Overall, combining MR FBCSP with LDA
achieved a promising average accuracy of about 71 % for a
SI-BCI design whereas the best SS-BCI design obtained an
average accuracy of about 82 %. This score is encouraging
as an accuracy of 70 % is sufficient to control a BCI, as
mentioned by Birbaumer [11]. Thus, these results suggested
the possibility of designing SI-BCI based on MI.

However, there is still room for improvements in terms
of classification accuracy. Future works could study more
advanced classifiers [9][12][13] or features [6][14] to im-
prove the performance. A more promising direction could
be to incrementally transform the SI-BCI into a SS-BCI by
using EEG data from the current user with unsupervised
adaptation [15][16]. It could also prove rewarding to study

normalization strategies in order to reduce subject-to-subject
variability.
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