
 
 

 

 

Abstract—The Filter Bank Common Spatial Pattern 

(FBCSP) algorithm performs autonomous selection of key 

temporal-spatial discriminative EEG characteristics in motor 

imagery-based Brain Computer Interfaces (MI-BCI). However, 

FBCSP is sensitive to outliers because it involves multiple 

estimations of covariance matrices from EEG measurements. 

This paper proposes a Robust FBCSP (RFBCSP) algorithm 

whereby the estimates of the covariance matrices are replaced 

with the robust Minimum Covariance Determinant (MCD) 

estimator. The performance of RFBCSP is investigated on a 

publicly available dataset and compared against FBCSP using 

10××××10-fold cross-validation accuracies on training data, and 

session-to-session transfer kappa values on independent test 

data. The results showed that RFBCSP yielded improvements 

in certain subjects and slight improvement in overall 

performance across subjects. Analysis on one subject who 

improved suggested that outliers were excluded from the robust 

covariance matrices estimation. These results revealed a 

promising direction of RFBCSP for robust classifications of 

EEG measurements in MI-BCI. 

I. INTRODUCTION 
he Common Spatial Pattern (CSP) algorithm is effective 
in constructing optimal spatial filters that discriminates 

two classes of EEG measurements in motor-imagery-based 
Brain-Computer Interface (MI-BCI) [1], [2]. The Filter Bank 
Common Spatial Pattern (FBCSP) algorithm was recently 
proposed to select subject-specific operational frequency 
band for extracting discriminative CSP features [3]. 
Although FBCSP is a simple method of selecting appropriate 
subject-specific band-pass filtering for the CSP algorithm, it 
performed the best relative to other international submissions 
in the BCI Competition IV dataset IIa and IIb [4]. 

The FBCSP algorithm used the classical estimation of 
multivariate covariance matrices from the EEG 
measurements for a filter bank of CSP [3]. However, EEG 
measurements are often contaminated with outliers, such as 
artifacts or non-standard noise sources [5], that deviate from 
the usual pattern of the majority of the data [6]. If the EEG 
measurements are contaminated with even a few extreme 
outliers, the multivariate covariance estimates typically 
differs substantially from the estimate without the outliers 
[6]. Hence, FBCSP is sensitive to outliers in the training 
data. 
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Robust techniques such as channel removal, outlier trial 
removal, and normalization were first proposed to reduce the 
influence of outliers in EEG-based BCI in [5]. The study 
investigated EEG data of 8 subjects and results revealed that 
outlier trial removal was useful for robust classification of 
EEG measurements for MI-BCI. However, certain robust 
technique improved performance of some subjects but 
deteriorated the performance of others. Hence the study 
suggested that there is no overall best robust technique and 
that subject-specific robust technique has to be chosen. 

Recently, a robust CSP algorithm was proposed [7] to 
replace the estimation of the covariance matrices with the 
robust Minimum Covariance Determinant (MCD) estimator, 
and the computation of the variance of the CSP projected 
EEG with the Median Absolute Deviation (MAD). The study 
investigated EEG data of 5 subjects from the BCI 
Competition III Dataset IVa using robust CSP and non-
robust CSP. The results showed effectiveness of robust CSP 
on artificially introduced outliers, but results showed slight 
deterioration of performance compared to non-robust CSP 
on the data without artificially introduced outliers. 

This paper proposes a Robust Filter Bank Common 
Spatial Pattern (RFBCSP) whereby the estimates of the 
covariance matrices are replaced with the MCD estimator. 
Another variant of RFBCSP is also presented that used MCD 
and replaced the computation of the variance of the CSP 
projected EEG with MAD. The performances of these two 
variants of RFBCSP are investigated on the BCI 
Competition IV dataset IIb [8] using 10×10-fold cross-
validations on training data and session-to-session transfer 
on the test data. The performances are compared with the 
non-robust FBCSP [3] that out-performed other submissions 
for this dataset [4]. 

The remainder of this paper is as follows: Section II and 
III describe the FBCSP algorithm and the proposed RFBCSP 
algorithm respectively. Section IV presents the experimental 
results and section V concludes this paper. 

II. FILTER BANK COMMON SPATIAL PATTERN 
The Filter Bank Common Spatial Pattern (FBCSP) 

algorithm [3] illustrated in Fig. 1 comprises 4 progressive 
stages of signal processing and machine learning on the EEG 
measurements. The CSP projection matrix for each filter 
band, discriminative CSP features, and classifier model are 
computed from training data labeled with the respective 
motor imagery action. These parameters are used to 
discriminate motor imagery actions from single-trial EEG 
measurements in the evaluation phase. The following 
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describe each stage in more detail: 

 

 

Fig. 1. Architecture of the Filter Bank Common Spatial Pattern (FBCSP) 

algorithm for the training and evaluation phases. 

 

A. Band-pass filtering 
The first stage employs a filter bank that decomposes the 

EEG into multiple frequency pass bands using causal 

Chebyshev Type II filter. A total of 9 band-pass filters are 

used, namely, 4-8 Hz, 8-12 Hz,…, 36-40 Hz. 

B. Spatial filtering 
The second stage performs spatial filtering using the CSP 

algorithm. The CSP algorithm is highly successful in 

calculating spatial filters for detecting Event Related 

Desynchronization or Event Related Synchronization 

(ERD/ERS) in the EEG measurements [1]. Each pair of 

band-pass and spatial filter in the first and second stage 

computes the CSP features that are specific to the band-pass 

frequency range. Spatial filtering is performed using the CSP 

algorithm by linearly transforming the EEG measurements 

using 

 
, ,

T
b i b b i=Z W E , (1) 

where Eb,i∈ℝc×t
 denotes the single trial EEG measurement 

for the ith

 trial from the bth

 band-pass filter; Zb,i∈ℝc×t
 denotes 

Eb,i after spatial filtering; Wb∈ℝc×c
 denotes the CSP 

projection matrix for the bth

 band; c is the number of 

channels; t is the number of EEG samples per channel; and 
T
 

denotes transpose operator. 

The CSP algorithm computes the transformation matrix 

Wb to yield features whose variances are optimal for 

discriminating 2 classes of EEG measurements [9-12] by 

solving the eigenvalue decomposition problem 

 ( )
,1 ,1 ,2b b b b b b= +Σ W Σ Σ W D , (2) 

where ∑∑∑∑b,1
 and ∑∑∑∑b,2

 are estimates of the covariance matrices 

of the bth

 band-pass filtered EEG measurements of the 

respective motor imagery action, Db is the diagonal matrix 

that contains the eigenvalues of ∑∑∑∑b,1.
 

Since band-pass EEG measurements have approximately 

zero mean values, the covariance matrices are estimated by 

 

( ), , ,

1
ˆ

1

T
b b bt nω ω ω

ω

=
× −

Σ E E , (3) 

where ω=1, 2; Eb,ω∈
( )*c t nω×ℝ denotes the concatenated EEG 

measurements of all the trials in the training data for the 

motor imagery action of class ω, t is the number of EEG 

samples per channel, and nω denotes the number of trials in 

the training data that belongs to class ω. 

The spatial filtered signal Zb in equation (1) using Wb 

from equation (2) thus maximizes the differences in the 

variance of the 2 classes of band-pass filtered EEG 

measurements. The m pairs of CSP features for the bth

 band-

pass filtered EEG measurements is then given by 

 ( )( )log / tr
T T T T

b b b b b b b b bdiag  =  cf W E E W W E E W , (4) 

where cfb∈ℝ2m
; bW  represents the first m and the last m 

columns of Wb; diag(⋅) returns the diagonal elements of the 

square matrix; tr[⋅] returns the sum of the diagonal elements 

in the square matrix. 

The FBCSP feature vector for the ith

 trial is then formed as 

follows 

 [ ]
1 2 9
, , ,i =x cf cf cf… , (5) 

where xi∈ℝ1×(9*2m)

, i=1,2,…,n; n denotes the total number of 

trials in the training data. 

The FBCSP feature matrix from training data is then  

 
1 2

TT T T
n =  X x x x… , (6) 

where X∈ℝn×(9*2m). 

C. Feature selection 
The third stage employs a feature selection algorithm, 

namely the Mutual Information-based Best Individual 

Feature (MIBIF) algorithm [13], to select discriminative 

CSP features from X for the subject’s task.  

Given a set of features 
1 2 9 2

, ,
T T T

m× = = F f f f X…  such that 

X is from equation (6), 
T
jf ∈ℝn×1

 is the jth

 column vector of 

X; MIBIF selects k best features that results in the highest 

estimate of mutual information with the class labels. Based 

on the study in [3], k=4 is used. Since the CSP features are 

paired, the corresponding CSP features that come in pairs 

with the selected k features are also included as well. The 

feature selected training data is denoted as 
n d×∈X ℝ  where 

d ranges from 4 to 8. 

D. Classification 
The fourth stage employs a classification algorithm, 

namely the Naïve Bayesian Parzen Window (NBPW) 

classifier [13], to model and classify the selected CSP 

features. The classification rule of NBPW is given as 

 ( )
1,2

arg max |p
ω

ω ω
=

= x , (7) 

where p(ω|x) denotes posterior probability of the class being 

ω=1,2, given the random trial [ ]
1 2
, , dx x x=x …  and d 

denotes the number of selected features from the third stage. 

For further details on the FBCSP algorithm, the reader is 

referred to [3]. 
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III. ROBUST FILTER BANK COMMON SPATIAL PATTERN 
Many multivariate datasets contain outliers that deviate 

from the patterns of a majority of the data [5], [6]. Thus the 
use of the classical multivariate method to estimate the 
covariance matrices of EEG measurements in the CSP 
algorithm is sensitive to outliers [7]. Robust statistics, on the 
other hand, provides alternatives to the classical statistical 
estimates that are not affected by outliers [14]. A measure of 
robustness of an estimator is the breakdown value, which 
states the smallest amount of outlier contamination that can 
have arbitrarily large effect on the estimator [6]. 

A. Minimum Covariance Determinant estimate 
The non-robust CSP algorithm has an inherent breakdown 

value of 0 [7]. Thus the robust CSP algorithm was proposed 
[15] to replace the classical multivariate estimate with the 
Minimum Covariance Determinant (MCD) estimator. 

The FBCSP algorithm, which uses the classical 
multivariate estimate in equation (3), also has an inherent 
breakdown value of 0. Therefore, the Robust Filter Bank 
Common Spatial Pattern (RFBCSP) is proposed to replace 
equation (3) with the MCD estimator 

 
( ), , ,

1ˆ ˆ ˆ
1

T
b b bt nω ω ω

ωα
=

× × −
Σ E E , (8) 

where 
 , ,

ˆ

ˆ ˆarg minb bω ω
ε ε⊂

=E Σ ; (9) 

(1-α) is the fraction of outliers to resist, α=[0.5, 1]; ε is the 
set of t*nω c-dimensional elements of Eb,ω∈ ( )*c t nω×ℝ ; ε̂  is 
the subset of ε containing α*t*nω  c-dimensional elements of 
Êb,ω∈

( )* *c t nωα×ℝ ; and ⋅  denotes determinant. 
The MCD estimator in equation (9) thus computes a 

defined fraction α of the data such that the determinant of the 
estimate of the covariance matrix is minimized. The issues of 
the MCD estimator are that it depends on the initial estimates 
and it is iterative [15]. The FASTMCD algorithm resolves 
these issues by drawing multiple random subsets of the data 
and iteratively approximates towards a lower determinant 
[15]. The implementation of FASTMCD is available as the 
MATLAB function “mcdcov” in the LIBRA Toolbox from 
[16]. 

B. Median Absolute Deviations estimate 
The non-robust CSP algorithm uses the classical variance 

estimate of the spatial filtered signal. Hence, the robust CSP 
algorithm proposes replacing the classical variance estimate 
with the Median Absolute Deviation (MAD) estimate [7]. 

Similarly, in the proposed RFBCSP algorithm, the use of 
the classical variance estimate of the spatial filter signal in 
the equation (4) can be replaced with the Median Absolute 
Deviation (MAD) estimate [14] given by 

 ( )( )( )2
1.4826 med medT T

b b b b b= × −cf W E W E , (10) 

where med(A) gives the median of the rows of A. 

IV. EXPERIMENTAL RESULTS 
This section evaluates the performance of the proposed 

RFBCSP algorithm on the BCI Competition IV dataset IIb 
[8]. The dataset consists of 9 subjects whereby the training 
data for each subject comprises 3 sessions of single-trial 
EEG data from 3 bipolar recordings (C3, Cz and C4) while 
the subject performed 2-class hand motor imagery. The first 
2 sessions consist of 240 single trials without visual feedback 
and the third session consist of 160 single trials with visual 
feedback to the subject. The selections of the training 
sessions to be used as training data for each subject are based 
on the winners of the BCI Competition IV dataset IIb [4]. 
The evaluation data consists of 2 sessions of single-trial EEG 
data, totaling 320 trials. 

The running classification performance of the proposed 
RFBCSP with MCD (denoted MCD), and the variant of 
RFBCSP with MCD and MAD (denoted MCDMAD) are 
compared against the non-robust FBCSP on the training data 
using 10×10-fold cross-validations. For running 
classification, the same EEG time segment of 0.5 to 2.5s 
relative to the visual cue is used for training and validation 
[17]. The MCD and MCDMAD are configured with the 
default α=0.75 implemented in the “mcdcov” function from 
the LIBRA toolbox [16]. The results presented in Table I 
showed that MCD yielded better accuracies for subjects 2, 7 
and 9 (shaded in gray). The results also showed that MCD 
yielded slightly better overall accuracy than non-robust 
FBCSP (79.21% versus 79.20, p=0.97) and MCDMAD 
yielded poorer accuracy (78.06%, p=0.20), but both are not 
statistically significant using paired-sample t-test. 
 

TABLE I 
RESULTS IN VALIDATION ACCURACIES OF RUNNING CLASSIFICATION USING 

FBCSP, RFBCSP WITH MCD, AND RFBCSP WITH MCDMAD 
 Subjects  

Method 1 2 3 4 5 6 7 8 9 AVG 
77.32 56.73 61.05 98.63 85.88 81.81 85.88 87.06 78.44 79.20 FBCSP 
±0.51 ±1.15 ±1.28 ±0.26 ±0.60 ±1.54 ±2.54 ±0.42 ±0.53 ±0.98 
77.18 58.13 59.85 98.56 85.81 79.94 86.88 87.44 79.13 79.21 MCD 
±0.39 ±1.57 ±1.34 ±0.30 ±1.10 ±1.57 ±2.19 ±0.46 ±0.84 ±1.09 
78.32 53.60 57.93 97.50 80.63 78.50 89.00 87.81 79.25 78.06 MCDMAD 
±0.92 ±1.73 ±1.46 ±0.00 ±1.21 ±1.75 ±0.44 ±0.53 ±0.87 ±0.99 

            

The session-to-session transfers of MCD, MCDMAD are 
then evaluated and compared with the non-robust FBCSP on 
the evaluation data in terms of kappa values. The kappa 
value is computed using the BIOSIG toolbox [18]. For static 
classification, the EEG time segment of 0.5 to 2.5s relative 
to the visual cue is used for training, then the entire time 
segment from a single trial is used for evaluation [17]. The 
results presented in Table II showed that MCD yielded better 
kappa values for subjects 1, 3, 5 and 6 (shaded in gray). The 
results also showed that MCD yielded slightly better overall 
kappa value compared to the non-robust FBCSP (0.606 
versus 0.585, p=0.11) and MCDMAD yielded poorer overall 
kappa value (0.568, p=0.06), but both are not statistically 
significant using paired-sample t-test. It is noted that the 
overall kappa value of RFBCSP with MCD is relatively 
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better than the winner of this dataset [4]. 
TABLE II 

EXPERIMENTAL RESULTS IN KAPPA VALUES OF STATIC CLASSIFICATION 
USING FBCSP, RFBCSP WITH MCD, AND RFBCSP WITH MCDMAD 

 Subjects  
Method 1 2 3 4 5 6 7 8 9 AVG 
FBCSP 0.356 0.171 0.169 0.963 0.850 0.594 0.556 0.856 0.750 0.585 
MCD 0.363 0.171 0.256 0.956 0.869 0.669 0.563 0.856 0.750 0.606 

MCDMAD 0.319 0.143 0.150 0.931 0.775 0.569 0.594 0.888 0.744 0.568 
 

Since the results in Table II showed that the kappa value 
of subject 3 is significantly improved from 0.169 for non-
robust FBCSP to 0.256 for MCD, a further analysis is 
performed to investigate the band-pass filtered EEG 
measurements that are selected by RFBCSP but excluded by 
MCD. Fig. 2(a) shows the plot of a single trial of EEG 
measurements from the training data of subject 3 that are 
band-pass filtered from 4-8 Hz without outliers identified by 
MCD. Fig. 2(b) shows the plot of a single trial of EEG 
measurements with more than half of the time-samples 
identified as outliers by MCD. The plot of the latter shows a 
relatively high amplitude EEG data that are band-passed 
using 4-8 Hz, which could suggest the presence of artifacts. 
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Fig. 2. (a) Plot of a signal trial from the training data of subject 3 without 
outliers identified by MCD, (b) plot of a trial from the training data of 
subject 3 with more than half time samples identified as outliers by MCD. 

V. CONCLUSIONS 
The Filter Bank Common Spatial Pattern (FBCSP) 

algorithm is sensitive to outliers because it involves multiple 
estimations of covariance matrices from the EEG 
measurements. This paper proposes a Robust FBCSP 
(RFBCSP) algorithm whereby the estimates of the 
covariance matrices are replaced with the robust Minimum 
Covariance Determinant (MCD). Another variant of 
RFBCSP that used MCD and replaced the variance estimate 
of the spatial filter signal with the Median Absolute 
Deviation (MAD) is also presented. The performances of 
RFBCSP with MCD, and RFBCSP with MCD and MAD are 
investigated on the BCI Competition IV dataset IIb and 
compared against the non-robust FBCSP using running and 
static classification. 

Experimental results showed that RFBCSP with MCD 
yielded improvements in certain subjects. The results also 
showed that RFBCSP with MCD yielded slight overall 
improvements in both static and running classification, even 
though the improvements are not statistically significant. 
However, the results showed that RFBCSP with MCD and 
MAD yielded deterioration. These results suggest a 

promising direction of replacing the classical multivariate 
covariance estimates with the robust MCD, but not to replace 
the variance estimate of the spatial filter signal with MAD. 
Further analysis on one of the subjects with improved 
performance suggested that outliers were excluded from the 
estimation of the covariance matrices. Thus the results in this 
study revealed a promising direction in RFBCSP on robust 
classifications of EEG measurements for MI-BCI. 
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