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Abstract— The Hybrid neural Fuzzy Inference System (Hy-
FIS) is a five layers adaptive neural fuzzy inference system,
based on the Compositional Rule of Inference (CRI) scheme,
for building and optimizing fuzzy models. To provide the HyFIS
architecture with a firmer and more intuitive logical frame-
work that emulates the human reasoning and decision-making
mechanism, the fuzzy Yager inference scheme, together with
the self-organizing gaussian Discrete Incremental Clustering
(gDIC) technique , were integrated into the HyFIS network
to produce the HyFIS-Yager-gDIC . This paper presents T2-
HyFIS-Yager, a Type-2 Hybrid neural Fuzzy Inference System
realizing Yager inference, for learning and reasoning with
noise corrupted data. The proposed T2-HyFIS-Yager is used to
perform time-series forecasting where a non-stationary time-
series is corrupted by additive white noise of known and
unknown SNR to demonstrate its superiority as an effective
neuro-fuzzy modeling technique.

I. INTRODUCTION

Information uncertainties are inherent in everyday life,
from the natural linguistic fuzziness at the cognitive level
to the measurement inaccuracies at the empirical level. All
of these uncertainties translate into uncertainties about the
fuzzy set membership functions. Traditional Type-1 fuzzy
logic systems are unable to directly model such uncertainties
because crisp membership grades are used for the fuzzy
membership functions in the systems. On the other hand,
Type-2 fuzzy logic systems [1],[5] are able to handle in-
formation uncertainties because the membership grades of
the fuzzy membership functions used are also fuzzy. Such
membership functions are fuzzy sets whose membership
grades are Type-1 fuzzy sets, hence they are useful in
incorporating information uncertainties in the systems.

The Hybrid neural Fuzzy Inference System (HyFIS) [4]
is a five layers adaptive Type-1 neural fuzzy network that
is used to combine numerical and linguistic information
into a common framework. It adopts a two phase learning
scheme. In the first phase, a fuzzy technique by Wang and
Mendel [14] is used to obtain the initial fuzzy rulebase and
the initial structure of the neural fuzzy system. In the sec-
ond phase, a parameter learning technique using a gradient
descent approach is used to tune the memberships of the
input and output dimensions. Subsequently, the fuzzy Yager
inference scheme [3], which accounts for a firm and intuitive
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logical framework that emulates the human reasoning and
decision-making mechanism, is integrated into the HyFIS
network. Together with the implementation of the gaussian
Discrete Incremental Clustering (gDIC) [10] technique in
the initialization phase of the HyFIS network which allows
for self-organization of the membership functions, a self-
organizing Hybrid neural Fuzzy Inference System based on
Yager inference (HyFIS-Yager-gDIC) [13] is produced. The
realization of the fuzzy Yager inference scheme in the HyFIS
network offers a firm and intuitive logical framework, and the
use of gDIC is shown to be able to robustly handle noisy data
when the noise level is low.

This paper presents the Type-2 Hybrid neural Fuzzy In-
ference System which implements the Yager inference (T2-
HyFIS-Yager), a self-organizing hybrid neural fuzzy infer-
ence system embedded with Type-2 fuzzy Yager inference.
The proposed T2-HyFIS-Yager integrates the mathematical
formalism of Type-2 fuzzy logic inference with the self-
organizing Yager based HyFIS inference network, and allows
for the robust learning and reasoning with noise corrupted
data of known and unknown SNR. T2-HyFIS-Yager couples
the Mamdani rule system [7] with Type-2 fuzzy inference
to provide a clear interpretation to its knowledge-base and
reasoning process for the comprehension of the human user.

The rest of the paper is organized as follows: the HyFIS
and HyFIS-Yager-gDIC networks are briefly described in
Sect. II; the operations and learning process of the proposed
T2-HyFIS-Yager network are presented in Sect. III; the
application of T2-HyFIS-Yager on the forecasting of a non-
stationary time-series corrupted with additive white noise is
described in Sect. IV; and Sect. V concludes the paper.

II. HYFIS AND HYFIS-YAGER-GDIC

HyFIS [4] and HyFIS-Yager-gDIC [13] are two Type-1
multilayer neural network based fuzzy systems. They express
the knowledge induced from the training data by means of
a set of IF–THEN Mamdani fuzzy rules. Both HyFIS and
HyFIS-Yager-gDIC share the same generic architecture as
shown in Fig. 1 and the network consists of five layers
of nodes. Layer 1 consists of the input linguistic nodes;
layer 2 consists of the antecedent nodes; layer 3 is the
rule nodes; layer 4 is the consequent nodes; and layer 5
consists of the output linguistic nodes. Each input node
IVi, i ∈ {1 . . . n1} in layer 1 takes in a single input value and
the input vector is represented as x = {x1, . . . , xi, . . . , xn1}.
Each output node OVm, m ∈ {1 . . . n5} in layer 5 produces
a single output value and the output vector is represented
as y = {y1, . . . , ym, . . . , yn5}. In addition, the vector d =
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Fig. 1. Structure of HyFIS/HyFIS-Yager-gDIC.

{d1, . . . , dm, . . . , dn5} represents the desired output during
the parameter learning phase. For each input variable IVi, it
will consist of Ji number of fuzzy labels. Each antecedent
node will be represented as ILi,ji , ji ∈ {1 . . . Ji} and the
total number of nodes in layer 2 is n2 =

∑
i Ji. For

each output variable OVm, it will consist of Lm number of
fuzzy labels. Each consequent node will be represented as
OLlm,m, lm ∈ {1 . . . Lm} and the total number of nodes in
layer 4 is n4 =

∑
m Lm. Layer 3 represents the rule nodes

Rk where k ∈ {1 . . . n3}. Fuzzy rules with certainty factors,
represented as weights in the synapses connecting layers 3
and 4 of the network, are used. The training parameters
are the centres and the widths of the gaussian membership
functions present in layers 2 and 4 defined by (1)

µ(c, σ;x) = e−((x−c)2/σ2) (1)

where c is the centre of the function and σ is the width of
the function.

A. HyFIS: Hybrid neural Fuzzy Inference System
HyFIS adopts a two phase learning scheme. The first phase

is the structure learning phase for knowledge acquisition. A
fuzzy technique by Wang and Mendel [14] is used to derive
an initial rulebase of the network. Prior knowledge about
the number of clusters is required to produce an evenly
spaced grid partition in the input and output dimensions.
The second phase is the parameter learning phase. The input
vector is propagated forward in the network following the
Compositional Rule of Inference (CRI) scheme [15] and
parameter tuning is performed by backpropagating the error
using a gradient descending approach.

B. HyFIS-Yager-gDIC: Self-organizing Hybrid neural Fuzzy
Inference System realizing Yager inference

Similar to the HyFIS network, HyFIS-Yager-gDIC also
adopts a two phase learning scheme. In phase one, the self-
organizing gDIC [10] is used to perform cluster partitioning
in the input and output dimensions. In phase two, a super-
vised learning scheme based on a gradient descent learning

is used to optimally tune the parameters of the membership
functions. The two phase learning scheme allows HyFIS-
Yager-gDIC to automatically formulate the initial fuzzy rules
from raw numerical training data and subsequently evolve its
structure through learning. In addition, the fuzzy Yager infer-
ence scheme [3] integrated into HyFIS-Yager-gDIC provides
it with a firm and logical framework that closely emulates
the human reasoning process.

III. T2-HYFIS-YAGER: TYPE-2 FUZZY YAGER
INFERENCE BASED HYFIS

The proposed T2-HyFIS-Yager network is developed by
mapping the interval Type-2 fuzzy Yager inference scheme
onto the generic structure of the HyFIS/HyFIS-Yager-gDIC
architecture as shown in Fig. 1. It adopts a two phase learning
process. In phase one, the self-organizing extended gDIC
technique is used to process noise corrupted raw numerical
training data and automatically determines the number of
clusters in each of the input and output dimensions. The ex-
tended Discrete Incremental Clustering (DIC) [12] technique
was first proposed for trapezoidal membership functions.
By implementing the extended gDIC technique for gaussian
membership functions in the initialization phase of the T2-
HyFIS-Yager network, prior knowledge about the number of
clusters is not required. This helps to maintain a consistent
representation of the fuzzy sets on a local basis, such that
the number of labels in the input and output dimensions need
not be the same. In phase two, a supervised learning scheme
based on a gradient descending approach is used to optimally
tune the parameters of the membership functions.

A. Implementation of Type-2 Fuzzy Yager Inference Scheme
The connectionist structure of the T2-HyFIS-Yager net-

work is based on a set of IF–THEN Mamdani fuzzy rules
that are formulated from the noise corrupted training data.
The k-th fuzzy rule is expressed in the form

Rk : IF x1 is ĨL(1,j1)k
and . . . and xi is ĨL(i,ji)k

and . . . and xn1 is ĨL(n1,jn1 )k

THEN y1 is ÕL(l1,1)k
and . . . and ym is ÕL(lm,m)k

and . . . and yn5 is ÕL(ln5 ,n5)k

where ĨL(i,ji)k
is the Type-2 ji-th input label associated with

the i-th input variable that is connected to Rk and ÕL(lm,m)k

is the Type-2 lm-th output label associated with the m-th
output variable that is connected to Rk.

In the proposed T2-HyFIS-Yager network, the training
parameters are the centers of the left and right formation
gaussian functions of the Type-2 fuzzy labels present in
layers 2 and 4 of the network as shown in Fig. 2(I). Each
fuzzy label in the antecedent layer and consequent layer is
defined by its footprint of uncertainty [8] given as (2)

µÃ(x) =
[
µ

Ã
(x), µÃ(x)

]
(2)

where Ã denotes the Type-2 fuzzy set, and µ
Ã
(x) and

µÃ(x) are the lower and upper membership functions of Ã
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respectively. They are defined as in (3) and (4)

µ
Ã
(x) =

{
µR(cR, σ;x) if x ≤ cL+cR

2
µL(cL, σ;x) otherwise (3)

µÃ(x) =

⎧
⎨

⎩

µL(cL, σ;x) if x ≤ cL

1 if cL < x ≤ cR

µR(cR, σ;x) if x > cR

(4)

where µL(cL, σ;x) and µR(cR, σ;x) refers to the left and
right formation gaussian functions respectively as defined
in (1), and cL and cR are the centres of the left and right
functions respectively.
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Fig. 2. (I) An interval Type-2 fuzzy set in the antecedent/consequent layer
denoted by its left and right formation gaussian functions (II) Gaussian
Type-2 fuzzification in the input layer.

1) Layer 1 – Gaussian Type-2 Fuzzification: Gaussian
Type-2 fuzzification is employed in the input layer of the T2-
HyFIS-Yager network to effectively handle the uncertainties
in the training data that is corrupted by noise. Each input
node IVi, i ∈ {1 . . . n1} in layer 1 takes in a single input
value xi and produces a gaussian Type-2 fuzzy set X̃i as
shown in Fig. 2(II). X̃i is given by its footprint of uncertainty
as in (5)

µX̃i
(x) =

[
µ

X̃i
(x), µX̃i

(x)
]

(5)

where the lower and upper memberships of X̃i are defined
as in (6) and (7)

µ
X̃i

(x) = µ(xi, σi;x) (6)

µX̃i
(x) = µ(xi,σi;x) (7)

respectively. µ(xi, σi;x) and µ(xi,σi;x) are gaussian func-
tions as defined in (1) with center xi, where σi and σi

define the lower and upper uncertainty bounds associated
with the noise corrupted training data xi. In this paper, it is
empirically assumed that σi = 0.3σtrain

i and σi = 0.5σtrain
i

where σtrain
i is the statistical variance of the input xi that is

computed from the training data.

2) Layer 2 – Antecedent Matching: Each antecedent node
in layer 2 of the T2-HyFIS-Yager network is denoted as
ĨLi,ji , i ∈ {1 . . . n1}, ji ∈ {1 . . . Ji} as defined in (2),
and it is the Type-2 ji-th input label associated with the
i-th input variable. The antecedent matching in the network
essentially computes the degree of dissimilarity fi,ji between
the gaussian Type-2 fuzzified input X̃i as given in (5) and
the corresponding Type-2 input label ĨLi,ji . The degree of
dissimilarity is an interval Type-1 fuzzy set given as in (8)

fi,ji =
[
f

i,ji
, f i,ji

]

= 1 − $x

[
µX̃i

(x) ⊓ µĨLi,ji
(x)

]
(8)

where ⊓ and $ denote the meet and join operations [9] on
Type-2 fuzzy sets respectively. Computationally, we have

f
i,ji

= 1 − sup
x

[
µX̃i

(x) ⋆ µĨLi,ji
(x)

]
(9)

f i,ji
= 1 − sup

x

[
µ

X̃i
(x) ⋆ µ

ĨLi,ji

(x)
]

(10)

where ⋆ is the min operator. µ
ĨLi,ji

(x) and µĨLi,ji
(x) are the

lower and upper membership functions of the Type-2 fuzzy
set ĨLi,ji , as defined in (3) and (4), respectively.

3) Layer 3 – Rule Fulfillment: The set of IF-THEN
Mamdani fuzzy rules that are induced from the training data
are defined in the rule layer of the proposed T2-HyFIS-Yager
network. The fuzzy rules denote the uncertain fuzzy relations
that characterize the input-output mappings of the noise
corrupted training data. Each rule node Rk, k ∈ {1 . . . n3}
functions to compute the overall degree of similarity between
the inputs and the antecedents of the k-th fuzzy rule. The
overall degree of similarity Fk is an interval Type-1 fuzzy
set defined as in (11)

Fk =
[
f

k
, fk

]

= 1 − $n1
i=1f(i,ji)k

(11)

where f(i,ji)k
is the output of the antecedent node ĨLi,ji

that is connected to Rk, as shown in (8). Computationally,
we have

f
k

= 1 − ∪n1
i=1f (i,ji)k

(12)

fk = 1 − ∪n1
i=1f (i,ji)k

(13)

where f
(i,ji)k

and f (i,ji)k
denote the lower and upper bounds

of the output of the antecedent node ĨLi,ji , as shown in (9)
and (10) respectively, that is connected to Rk.

4) Layer 4 – Consequent Derivation: Each consequent
node in layer 4 of the T2-HyFIS-Yager network is denoted
as ÕLlm,m, m ∈ {1 . . . n5}, lm ∈ {1 . . . Lm} as defined in
(2), and it is the Type-2 lm-th output label associated with
the m-th output variable. Considering the firing effect of a
single fuzzy rule Rk, the inferred fuzzy output set Ỹ Rk

(lm,m)

from ÕLlm,m is given as in (14)

µ
Ỹ

Rk
(lm,m)

(y) = 1 −
[
Fk ⊓

(
1 − µÕLlm,m

(y)
)]

(14)
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where Fk is the uncertain firing strength of the rule Rk due
to the noise corrupted inputs, as defined in (11).

The fuzzy Yager inference scheme adopts the disjunctive
model of fuzzy relation, where conclusions from multiple,
parallel rules have to be combined in a conjunctive manner
[11]. Since ÕLlm,m may serve as output to more than one
fuzzy rule, the overall inferred fuzzy output set Ỹlm,m from
ÕLlm,m due to the activation of the rulebase of the proposed
T2-HyFIS-Yager network is given as in (15)

µỸlm,m
(y) = ⊓k∈Klm,mµ

Ỹ
Rk
(lm,m)

(y) (15)

where Klm,m denotes the set of fuzzy rules in T2-HyFIS-
Yager that share the same output fuzzy label ÕLlm,m as
consequent.

The overall inferred fuzzy output set Ỹlm,m is a Type-2
fuzzy set, and we can re-express it in terms of its footprint
of uncertainty as in (16)

µỸlm,m
(y) =

[
µ

Ỹlm,m
(y), µỸlm,m

(y)
]

(16)

where µ
Ỹlm,m

(y) and µỸlm,m
(y) are the lower and upper

membership functions of the Type-2 fuzzy set Ỹlm,m. Com-
putationally, we have

µ
Ỹlm,m

(y) =
[
1 − ∪k∈Klm,mfk

]
∨ µ

ÕLlm,m
(y) (17)

µỸlm,m
(y) =

[
1 − ∪k∈Klm,mf

k

]
∨ µÕLlm,m

(y) (18)

where ∨ is the max operator. µ
ÕLlm,m

(y) and µÕLlm,m
(y)

are the lower and upper membership functions of the Type-2
fuzzy set ÕLlm,m, as defined in (3) and (4), respectively.

5) Layer 5 – Type Reduction and Defuzzification: Each
output node OVm, m ∈ {1 . . . n5} in layer 5 of the pro-
posed T2-HyFIS-Yager network performs two functions: (1)
type-reduction of the overall inferred Type-2 fuzzy set Ỹm

to the corresponding Type-1 fuzzy set Ym, where Ỹm =
∪Lm

lm=1Ỹlm,m is the combination of all the inferred fuzzy
output sets Ỹlm,m, as defined in (16), of its fuzzy labels;
and (2) the defuzzification of this Type-1 fuzzy set Ym to a
crisp output value ym. In this paper, the height type reduction
(HTR) [2] method is adopted for the proposed T2-HyFIS-
Yager network. To perform HTR, each inferred fuzzy output
set Ỹlm,m of the output label node OLlm,m is replaced by a
Type-2 singleton Ỹ ⋆

lm,m. Ỹ ⋆
lm,m is a Type-2 singleton fuzzy

set whose domain consists of a single point y⋆
lm,m, and the

membership grade of y⋆
lm,m is an interval set in [0, 1]. For

T2-HyFIS-Yager, y⋆
lm,m is defined to be the midpoint of the

domain of Ỹlm,m such that its membership grade is given as[
µ

Ỹlm,m
(y⋆

lm,m), µỸlm,m
(y⋆

lm,m)
]

where

µ
Ỹlm,m

(y⋆
lm,m) = min

y
µ

Ỹlm,m
(y) (19)

µỸlm,m
(y⋆

lm,m) = min
y

µỸlm,m
(y) (20)

respectively. That is, Ỹ ⋆
lm,m = µỸ ⋆

lm,m
(y⋆

lm,m) =[
µ

Ỹlm,m
(y⋆

lm,m), µỸlm,m
(y⋆

lm,m)
]

is employed to denote the

inferred fuzzy output set Ỹlm,m. The type-reduced set Ym of
OVm is then given as in (21)

Ym =
∫

ρ1,m

. . .

∫

ρLm,m

1/

∑Lm

lm=1 y⋆
lm,m

(
1−ρlm,m

1+σlm,m

)

∑Lm

lm=1

(
1−ρlm,m

1+σlm,m

) (21)

where ρlm,m ∈ Ỹ ⋆
lm,m, σlm,m is the width of the left/right

gaussian formation function of the Type-2 fuzzy label
ÕLlm,m, and Ym =

[
Y min

m , Y max
m

]
is an interval Type-1 fuzzy

set from the HTR process. The iterative algorithm described
in [2] is used to empirically compute Y min

m and Y max
m , and the

crisp output value ym is obtained through the defuzzification
of Ym by ym = 1

2 [Y min
m + Y max

m ].

B. Parameter Learning Phase

The supervised learning algorithm of the T2-HyFIS-Yager
is based on a gradient descent approach to minimize the error
function

E =
1
2

∑

X

∑

m

[dm − ym]2 (22)

where X is the training data set.

IV. EXPERIMENTAL RESULTS

The evaluation of the performance of T2-HyFIS-Yager
is done by applying it to the forecasting of a Mackey-
Glass chaotic time-series. The strength and potential of the
proposed T2-HyFIS-Yager is revealed through a comparison
with the HyFIS and the HyFIS-Yager-gDIC models.

A. Prediction of Chaotic Dynamic System: Mackey-Glass

The chaotic time-series is generated by a delay differential
equation

∂x(t)
∂t

=
αx(t − τ)

1 + xγ(t − τ)
− βx(t) (23)

which was first investigated by Mackey and Glass [6]. In this
study, 1000 input-output data samples which consist of four
past values of x(t) are used, i.e.,

[x(t − 18), x(t − 12), x(t − 6), x(t) ;x(t + 6)] .

There are four input dimensions and one output dimension
to the system. The first 500 samples were used as the
training set, while the remaining 500 pairs were used to test
the performance of T2-HyFIS-Yager. Six different cases are
considered in this study: the first case consists of data as
described above, while noise of 3%, 4%, 5% and 6% of the
power of the original signal are added in the next four cases,
and the last case is when random level noise ranging from
3% to 6% of the power of the original signal is added. A
measure of prediction accuracy is given by the root mean
square error (RMSE) defined as in (24)

RMSE =

[
1
n5

n5∑

m=1

(dm − ym)2
]1/2

. (24)
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TABLE I
COMPARISON ON MACKEY-GLASS PREDICTION

Type of Data Method RMSEtest

No Noise HyFIS 0.0220
HyFIS-Yager-gDIC 0.0190

T2-HyFIS-Yager 0.0694
3% Noise HyFIS 0.0266

HyFIS-Yager-gDIC 0.0236
T2-HyFIS-Yager 0.0694

4% Noise HyFIS 0.0257
HyFIS-Yager-gDIC 0.0229

T2-HyFIS-Yager 0.0694
5% Noise HyFIS 0.0639

HyFIS-Yager-gDIC 0.0597
T2-HyFIS-Yager 0.0838

6% Noise HyFIS 0.1915
HyFIS-Yager-gDIC 0.1526

T2-HyFIS-Yager 0.1134 (-25.7%)
Unknown Noise Level HyFIS 0.1296

HyFIS-Yager-gDIC 0.1176
T2-HyFIS-Yager 0.0997 (-15.2%)

B. Simulations

The three models, HyFIS, HyFIS-Yager-gDIC and the
proposed T2-HyFIS-Yager, are used to perform time-series
forecasting when (1) there is no noise in the signal, (2)
noise of known SNR is added into the signal, and (3) noise
of unknown SNR is added into the signal. The results are
shown in Table I. From Table I, the HyFIS-Yager-gDIC
model outperforms the HyFIS model in both the noise-free
and the noisy data. The performance of the HyFIS-Yager-
gDIC model is the best out of the three models when the
signal is noise-free and when the noise level is low in the
signal. However, when the noise level is above a threshold,
the proposed T2-HyFIS-Yager significantly outperforms the
other two models in the RMSE achieved based on the test
data. A reduction of 25.7% in the RMSEtest is achieved for
the proposed T2-HyFIS-Yager model over the HyFIS-Yager-
gDIC model when the noise level is set at 6%. Furthermore,
T2-HyFIS-Yager also obtains significantly better results over
the HyFIS and the HyFIS-Yager-gDIC models when noise of
unknown SNR is present in the data. For the unknown noise
level data, there is a reduction of 15.2% in the RMSEtest

for the proposed T2-HyFIS-Yager model when compared to
the HyFIS-Yager-gDIC model. Although the proposed model
do not perform as well as the Type-1 models during the
zero noise and low noise cases, we can observe that the
presence of low noise level in the original signal do not affect
the performance of T2-HyFIS-Yager as seen by the constant
RMSEtest value of 0.0694 obtained by T2-HyFIS-Yager for
the zero-noise, 3%-noise and 4%-noise cases.

Further investigations are shown in Figs. 3–4. Fig. 3 shows
the RMSE curves for the HyFIS-Yager-gDIC for the noisy
cases (when noise of 4 %, 5 % and 6 % are added to
the data). For each case, 150 epochs of training is applied.

As seen from the figure, the training RMSE curves show
good convergence for all the three cases, indicating that the
HyFIS-Yager-gDIC model is able to learn and generalize
the acquired knowledge well. However, the testing RMSE
curves only show good convergence for the 4 % and 5 %
noise cases, while the testing RMSE curve do not converge
for that of the 6 % noise level. This suggests that while the
HyFIS-Yager-gDIC model is able to handle low levels of
noise in the data, it is unable to cope when higher levels
of noise are present in the data. On the other hand, Fig. 4
presents the RMSE plots of the proposed T2-HyFIS-Yager
model for the training and testing data for the four cases
when known noise of 4%, 5%, 6%, and unknown noise
are present in the data. Similarly, 150 epochs of training is
applied. As seen from the figure, the training and the testing
RMSE curves show good convergence for all the four cases,
indicating that the T2-HyFIS-Yager model is able to learn
and generalize the acquired knowledge well. Comparing
Fig. 3 and Fig. 4, we can conclude that the proposed T2-
HyFIS-Yager model has demonstrated good efficiency in
modeling inaccuracies when the noise level is high and when
noise of unknown SNR is present in the original signal.
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Fig. 3. RMSE curves of HyFIS-Yager-gDIC for Mackey-Glass prediction.

V. CONCLUSIONS

This paper proposes a self-organizing Type-2 fuzzy Yager
based Hybrid neural Fuzzy Inference System named T2-
HyFIS-Yager. The proposed T2-HyFIS-Yager network inte-
grates the mathematical formalism of Type-2 fuzzy logic in-
ference with the self-organizing Yager based HyFIS inference
network, which allows for the robust learning and reasoning
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Fig. 4. RMSE curves of T2-HyFIS-Yager for Mackey-Glass prediction.

with noise corrupted data. The system has been used to
perform time-series forecasting and the superior performance
has shown that the T2-HyFIS-Yager model is effective in
modeling signals with known and unknown SNR.
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