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ABSTRACT

This paper proposes an iterative sparse representation-based
algorithm for voxel selection in functionalmagnetic resonance
imaging (fMRI) data. The output of the algorithm is a sparse
weight vector, of which the magnitude of each entry repre-
sents the significance of its corresponding voxel with respect
to mental tasks or stimulus. To demonstrate the validity of
our algorithm and illustrate its application, we apply this al-
gorithm to the Pittsburgh Brain Activity Interpretation Com-
petition (PBAIC) 2007 fMRI data set for selecting the vox-
els which are the most relevant to the tasks of the subjects.
Compared with three baseline methods, general linear model
(GLM)-based statistical parametric mapping (SPM), corre-
lation method and mutual information method, our method
shows satisfactory performance for voxel selection.

Index Terms— Functional magnetic resonance imaging
(fMRI), voxel selection, sparse representation, statistical para-
metric mapping (SPM), prediction.

1. INTRODUCTION

In functional magnetic resonance imaging (fMRI), an fMRI
scannermeasures the blood-oxygenation-leveldependent (BOLD)
signal at all points in a three dimensional grid of the brain.
The cells within this three-dimensional grid are known as
voxels. A typical fMRI data set is composed of the time
series (BOLD signals) of tens of thousand voxels. There-
fore, voxel selection plays an important role in fMRI data
analysis because of: (i) heavy computation burden; (ii) un-
correlation (or redundancy) of a large number of voxel time
series with respect to the stimulus/task presented to the sub-
ject. One class of voxel selection methods are based on sta-
tistical test/statistics that find brain regions with statistically
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significant response. A typical example is statistical paramet-
ric mapping (SPM) based on general linear model (GLM) [1].
The second class of voxel selection methods (e.g. Correlation
method) are based on the correlation between the voxel time
series and the time series of the task or stimulus [2, 3]. In this
paper, we present a new sparse representation based method
for voxel selection in fMRI data.
The sparse representation of signals can be modeled by

y = Aw, (1)

where y ∈ RN is a given signal vector,A ∈ RN×M is a basis
matrix, N < M . When the model (1) is used for fMRI data
analysis, A is a data matrix of which each column is a time
series of a voxel, y is a transformed stimulus/task function
which is obtained by convolving a stimulus/task function with
a hemodynamical response function.
The task of sparse representation is to find a solutionw ∈

RM of (1) such that this solution is as sparse as possible. In
many references such as [5, 6], a sparse solution is found by
solving the following optimization problem.

min ||w||1, s. t. Aw = y, (2)

where 1-norm ||w||1 is defined as
M∑
i=1

|wi|. Problem (2) can be

converted into a standard linear programming problem. Re-
cently, it has been found that Model (2) has applications in
feature selection and detection [7].
Two related methods are 1-norm support vector machine

(sparse SVM) [8] and Lasso regularization [9], which have
potential applications in feature selection including dimen-
sion reduction. Compared with 1-norm support vector ma-
chine and Lasso method, (2) has computational advantage es-
pecially when the number of the variables is extremely large.
GLM model is common used in fMRI data analysis. The

sparse representation model (1) can bee seen as the oppo-
site of the GLM Model, however there exists significant dif-
ference between the two models. In the sparse representa-
tion model, a lot of voxels are considered simultaneously, but
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the task/stimulus conditions are considered separately. Con-
versely, voxels are considered separately, but the task/stimulus
conditions are considered simultaneously in GLM model.
In this paper, we design an algorithm based on the linear

programming problem (2) for voxel selection in fMRI data
analysis. To demonstrate the effectiveness of this method, it
was applied to the fMRI data set of Pittsburgh Brain Activity
Interpretation Competitions (PBAIC) 2007. After voxel se-
lection with our method, we perform the prediction of experi-
ence based cognitive tasks from the fMRI data set of PBAIC
2007 as in [4]. The prediction results will be used in evalu-
ation of our method. In our data analysis, we also compare
our method with three baseline methods, GLM-SPMmethod,
correlation method and mutual information method.

2. MATERIALS ANDMETHODS

2.1. Algorithm

In this section, we present our algorithm based on (2) for
voxel selection. We do not directly use (2) mainly consid-
ering the following aspect: When N is not sufficiently large,
w obtained by single optimization may not reflect the impor-
tant features well. Even ifN is sufficiently large, this problem
still exists because of noise. Note that in this paper, A is an
fMRI data matrix of which each column is a time series of a
voxel and each row contains the data of one volume (or part of
one volume), y is the convolution of a stimulus/task function
and a hemodynamical response function. The following algo-
rithm is designed to detect the parts in the rows ofA (voxels)
relevant to y.
Algorithm 1:
Step 1: For k = 1, · · · , do the following Steps 1.1 to 1.4.

Step 1.1: Randomly chooseL rows from {a1, · · · , aN} to
construct a L byM matrix denoted asAk, the corresponding
L entries of y form a column vector denoted as yk ∈ RL.
Step 1.2: Solve the following optimization problem (sim-

ilar to (2)),

min ||w||1, s.t., Akw = yk. (3)

The optimal solution of (3) is denoted by w̄(k).
Step 1.3: Let

w(k) =
1

k

k∑

i=1

w̄(i). (4)

Step 1.4: If k > 1 and d(k) = ||w(k) − w(k−1)||2 < α,
where α is a predefined small positive constant, setw = w(k)

and go to Step 2. Otherwise go to Step 1.1.

Step 2: For a given positive θ, define R = {j| |wj | >

θ, j = 1, · · · , M}. Then R is our detected part of interest in
all rows ofA.

In Algorithm 1, there are three parameters L, α and θ

to be set in advance. We first set L much smaller than N

andM such that the optimization problem (3) can be quickly
solved (e.g. L = 0.2N ). Since Algorithm 1 is convergent
(the proof is omitted here), we can easily set a small α (e.g.
α < 0.01) to obtain a stable w. θ can be chosen in different
ways depending on the application. Here we present a prob-
ability method. Considering the entries of w are sparse, we
assume that the probability distribution of the entries of w is
Laplacian. Using all entries of w as samples, we estimate
the mean, the variance and the inverse cumulative distribu-
tion function F−1 of this Lapcian distribution. We then de-
fine R = {i| |wi| > θ, i = 1, · · · , M}, where θ is chosen as
F−1(p0), p0 is a given probability (e.g. 0.975 in this paper).
As will be shown in section 3, this method for determining θ

is acceptable.
Note that noise is not explicitly reflected in (3). However,

the weight vector w generally is affected by noise. Through
the average operation in (4), the effect of noise can be re-
duced. Considering that each w̄(i) is a regression coefficient
vector between training data matrixAi and yi, thus w(k) re-
flects the connection between training data matrix A and y.
Therefore, the magnitude of w represents the significance of
the ith column ofA with respect to y. Furthermore, our sim-
ulations and data analysis results show that a large fraction of
entries of w(k) are close to zero, i. e. w(k) is still sparse.
Based on the sparsity of w, the voxels which are the most
correlated to the stimulus/task function can be selected.

2.2. Voxel selection in functional MRI data

In this section, we apply Algorithm 1 to the fMRI data of
PBAIC 2007 [10] for voxel selection. The fMRI data was
collected by Siemens 3T Allegra scanner with imaging para-
meters TR and TE being 1.75s and 25ms respectively. Three
subjects’ data were available in the competition. Each sub-
ject’s data consists of three runs. Each run consists of 500 vol-
umes of fMRI data of which each volume contain 64×64×34
voxels (voxel size: 3.2×3.28×3.5 mm3). The preprocessed
data provided by the competition are used in this paper, in
which the feature data was preprocessed by convolving the
raw feature vectors with the double gamma hemodynamic re-
sponse filter (HRF) produced by the SPM. Through a mask
preprocessing, the total number of voxels in the brain is ≈
32000. Thus the fMRI data for each run is represented by
a matrix consisting of around 32000 columns (voxels) and
500 rows (time points). When the scans were obtained, the
subject was performing several tasks (e.g. listen to instruc-
tions, pick up fruits) in a virtual reality (VR) world. The
ratings for these tasks were computed and form the ground
truth. Only the tasks for the first two runs were distributed at
www.braincompetition.org. Therefore, here we use only data
from the first two runs for analysis. We present detailed re-
sults mainly for four tasks: (i) The Hits task, times when sub-
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ject correctly picked up fruit or weapon or took picture of a
pierced person; (ii) the Instructions task, which represents the
task of listening to instructions from a cell phone in the virtual
world; (iii) the Faces task, times when subject looked at faces
of a pierced or unpierced person; (iv) the Velocity task, times
when subject was moving but not interacting with an object.
For more detailed description of the data, refer to [10]. The
goal of the competition was to predict the task functions of
the third run using the fMRI data.
Using the Instructions task as an example, we now de-

scribe our data analysis method. The preprocessed fMRI data
downloaded from the competition website (www.braincom-
petition.org) is first filtered temporally by the filter 1

4 [1, 2, 1].
Next, the data is smoothed spatially by convoluting each vol-
ume with a 3 voxel × 3 voxel × 3 voxel gaussian kernel. We
then perform 2-fold cross-validation as follows. In the first
fold, we use Run 1 data to calculate the Pearson correlation
between the time series of each voxel and the transformed In-
structions task function. The voxels with high absolute value
of this correlation are chosen to form a set of voxels,N . Then,
our algorithm is used for a second selection of voxels to ob-
tain R ⊂ N . In Algorithm 1, A ∈ R500×|N|, of which each
column is a time series of a voxel in N , y ∈ R500 is a trans-
formed task function. The parameters in Algorithm 1 are set
as follows. The number of iterations is fixed to 600, L is
set to 25 and θ can be chosen as described in section II-A.
Ridge regression is used on the time series of voxels ∈ R

to predict the transformed Instructions task function of Run
2. Prediction accuracy is measured as the Pearson correlation
between the actual transformed task and the predicted task.
In the second fold, we use Run 2 data for training and predict
the transformed Instructions task function for Run 1. For the
purpose of comparison, we use three baseline methods, GLM-
SPM method, Pearson correlation and mutual information, to
replace our method for selection of voxels and perform the
2-fold cross-validation as described above.

3. RESULTS AND DISCUSSIONS

In this section, we demonstrate the validity of our algorithm
for voxel selection by analyzing the prediction accuracy. We
compare Algorithm 1 with GLM-SPM method, Pearson cor-
relation method and mutual information method for voxel se-
lection.
Prediction. First, we compare the ability of each method

in choosing themost relevant voxel. In Table 1, we present the
prediction accuracies (averaged over two folds) for NR = 1
for the transformed instruction task. Hereafter, NR denotes
the number of voxels ofR, the set of selected voxels. From ta-
ble 1, we can see that the voxel selected by Algorithm 1 is the
most correlated to the transformed task function across runs.
For the other 3 tasks, similar conclusion was be obtained.
Furthermore, we test if Algorithm 1 is consistently better

than GLM-SPM method, Pearson correlation and mutual in-

Table 1. Average Prediction accuracy over two folds obtained
with one voxel and Instructions task for various subjects and
methods

Sub 1 Sub 2 Sub 3
Algorithm 1 0.3227 0.5518 0.5337
GLM-SPM 0.2233 0.3620 0.1417
Correlation -0.0503 0.1213 0.1520
Mutual Information -0.0209 -0.0450 -0.0396

formation basedmethods for voxel selection. Letb = [1, 2, 4,

· · · , 300]. For each i (i = 1, · · · , 151), we set NR = bi

(the number of selected voxels), then predict the four trans-
formed task functions for all subjects and average the results
over two folds of cross validation. Fig. 1 shows the plots
of average prediction accuracy with respect to b for the four
methods and three subjects and four tasks. From this figure,
the average prediction accuracy using the voxels selected by
Algorithm 1 is consistently superior to those of Pearson cor-
relation and mutual information based methods. In several
cases e.g. shown in the subplot in the first row and the second
column of Fig. 1, the performance of Algorithm 1 is compar-
ative to that of GLM-SPM method; while in the other cases
e.g. shown in the subplot in the second row and the third col-
umn, the performance of Algorithm 1 is significantly better
than that of GLM-SPM method.

We also analyze the effectiveness of choosing R using θ as
described in Section II-A. Example, for instruction task, the
number of voxels in R obtained using Algorithm 1, Nth are:
Subject 1, 22 (fold 1), 29 (fold 2). The corresponding pre-
diction accuracy (averaged over two folds) for Subject 1 are
0.8151. The prediction accuracy (averaged over two folds)
for the four tasks and three subjects are marked with a ‘*’
in Fig. 1. Even though Nth does not correspond to the best
prediction accuracy, it can lead to a satisfactory result.

Localization. Now we analyze the effectiveness of Algo-
rithm 1 in localization from a biological perspective. Each of
the four tasks evaluated here can be related to activity in spe-
cific region(s) of the brain. For example, the hits and velocity
events are expected to be correlated with activity in the mo-
tor cortex, especially the part for planning actions, which is
the supplementary motor cortex. Instructions task is expected
to be correlated with activity in language processing area, the
auditory cortex. Now we choose a representative case, which
is for task 2 (Instructions), run 2 and Subject 3, to show our
results of localization. For the other cases, we also have bi-
ologically reasonable conclusion. For Instructions task, 25
voxels are selected using Algorithm 1 with their distribution
shown in Fig. 2. We can see that most of these voxels are in
the appropriate areas of the brain. For instance, Voxels from
the auditory cortex are shown in Slices 14, 16, 19, 20 etc.
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Fig. 1. Prediction accuracy curves obtained by four methods.
In each subplot, red solid line: Alg. 1; black dotted line:
GLM-SPMmethod; blue solid line: Correlation method; blue
dash-doted line: Mutual information method. The four rows
correspond to four tasks (Hits, Instructions, Faces, Velocity)
respectively.

Slice 5 Slice 6 Slice 8 Slice 10

Slice 11 Slice 12 Slice 13 Slice 14

Slice 15 Slice 16 Slice 17 Slice 18

Slice 19 Slice 20 Slice 23 Slice 28

Slice 29 Slice 31

Fig. 2. Distribution of 25 selected Voxels (highlighted in red)
corresponding to the first 25 highest weights calculated by
Algorithm 1 for Instructions task, Run 2 and Subject 3. Slices
are numbered from inferior to the superior parts of the brain.

4. CONCLUSIONS

In this paper, we presented an iterative detection algorithm
based on sparse representation. This algorithm may be used

for feature selection, localization, novelty detection, etc. Here,
we presented one application for voxel (feature) selection in
fMRI data analysis. The validity of our method was shown
through the comparison with three baseline methods, GLM-
SPM method, Pearson correlation method and mutual infor-
mation method, in our data analysis.
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