
  

  

Abstract— This paper investigates the classification of multi-
class motor imagery for electroencephalogram (EEG)-based 
Brain-Computer Interface (BCI) using the Filter Bank 
Common Spatial Pattern (FBCSP) algorithm. The FBCSP 
algorithm classifies EEG measurements from features 
constructed using subject-specific temporal-spatial filters. 
However, the FBCSP algorithm is limited to binary-class motor 
imagery. Hence, this paper proposes 3 approaches of multi-class 
extension to the FBCSP algorithm: One-versus-Rest, Pair-Wise 
and Divide-and-Conquer. These approaches decompose the 
multi-class problem into several binary-class problems. The 
study is conducted on the BCI Competition IV dataset IIa, 
which comprises single-trial EEG data from 9 subjects 
performing 4-class motor imagery of left-hand, right-hand, foot 
and tongue actions. The results showed that the multi-class 
FBCSP algorithm could extract features that matched 
neurophysiological knowledge, and yielded the best 
performance on the evaluation data compared to other 
international submissions. 

I. INTRODUCTION 
HE use of Brain-Computer Interfaces (BCI) in real-
world applications is limited by low bit-transfer rates. To 

enhance the information gain from multi-channel scalp 
electroencephalogram (EEG) recordings, an approach is to 
instruct the subject to perform tasks that generate multiple 
discriminative brain states rather than just two brain states 
[1]. These multiple brain states could be induced through 
motor imagery whereby the subject imagines performing a 
movement from the first-person perspective without actually 
executing it [2]. As illustrated in the human homunculus [3], 
and functional Magnetic Resonance Imaging studies on 
finger, toe and tongue imagery [2], different body parts have 
a spatially ordered layout in the primary motor cortex. 
Hence, spatially discriminable patterns of EEG signals [4] 
are discernable for multi-class motor imagery BCI (MI-BCI). 

Studies have been performed to assess signal processing 
and machine learning techniques for discriminating multiple 
brain-states in MI-BCI. One approach is the multi-class 
extension of the Common Spatial Pattern (CSP) algorithm, 
which has shown effectiveness in calculating spatial filters 
that maximize the variance between 2 conditions such as left-
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hand and right-hand motor imagery [5]. Various multi-class 
approaches to extend the CSP algorithm have been reported, 
such as the Pair-Wise approach [6], the One-Versus-Rest 
approach [4], the Simultaneous Diagonalization approach [4] 
and Information Theoretic Feature Extraction (ITFE) 
approach [7]. These approaches were investigated on 3 to 4 
classes of motor imagery data from the hands, foot or tongue. 

However, a caveat of the CSP algorithm is the selection of 
specific frequency bands of the EEG data. Although a 
wideband of 8-30Hz was suggested [5], evidence showed 
that selecting subject-specific frequency bands could yield an 
improvement in the recognition rate of MI-BCI [8]. To 
address the problem of selecting the subject-specific 
frequency band for the CSP algorithm, the Filter Bank 
Common Spatial Pattern (FBCSP) algorithm was proposed 
for MI-BCI. The FBCSP algorithm classifies single-trial 
EEG based on selected features computed from subject-
specific temporal-spatial filters. The performance of the 
FBCSP algorithm has shown encouraging results on in-house 
data from 8 healthy subjects and 35 hemiparatic stroke 
patients, as well as publicly available data from the BCI 
Competition III dataset IVa [9] and the BCI Competition IV 
dataset IIb [10]. 

However, the FBCSP algorithm is limited to binary-class 
motor imagery. Hence this paper proposes 3 approaches of 
multi-class extension to the FBCSP algorithm: the One-
Versus-Rest (OVR) approach, the Pair-wise (PW) approach, 
and the Divide-and-Conquer (DC) approach. As the CSP 
algorithm used in FBCSP was originally designed for binary-
class problems, these 3 approaches decompose the multi-
class problem into several binary-class problems. The 
performance of these 3 approaches are investigated on 4-
class single-trial EEG data from the BCI Competition IV 
dataset IIa whereby 9 subjects performed left-hand, right-
hand, foot or tongue motor imagery. 

The remainder of this paper is organized as follows: 
Section II describes the FBCSP algorithm. Section III 
describes the 3 proposed approaches of the multi-class 
extension. Section IV discusses the results on the BCI 
Competition IV dataset IIa and analyzes the performance of 
the proposed approaches. 

II. FILTER BANK COMMON SPATIAL PATTERN (FBCSP) 
The FBCSP algorithm was developed to address the 

selection of the subject-specific frequency band for the CSP 
algorithm [9]. The FBCSP algorithm, shown in Fig. 1, 
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comprises 4 stages that perform an autonomous selection of 
subject-specific temporal-spatial discriminative EEG 
characteristics for 2-class MI-BCI. 
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Fig. 1: Architecture of the FBCSP algorithm for two-class motor imagery 
EEG data 

 

The first stage of FBCSP performs frequency filtering 
using a Chebyshev Type II filter bank that decomposes the 
EEG measurements into 9 multiple pass-bands 4-8Hz, 8-
12Hz … 36-40Hz. The second stage performs spatial 
filtering by linearly transforming the EEG data using the 
CSP algorithm to the following feature vector for the ith trial, 
 [ ]1 2 9, , ,i =x cf cf cf… , (1) 

 where cfb∈¡2m denotes the m=2 pairs of CSP features 
for the bth band-pass filtered EEG measurements, 
xi∈¡1×(9*2m). 

The third stage performs feature selection of the extracted 
features using the Mutual Information Best Individual 
Features (MIBIF) algorithm [9]. This algorithm selects the 
best k=4 features sorted by mutual information with the class 
label in descending order. Since CSP features are paired, the 
corresponding CSP features which come in pairs with the 
selected k features are also selected.  

The fourth stage performs classification using the Naïve 
Bayes Parzen Window (NBPW) Classifier, where the 
classification rule is given as 
 ( )

1,2
arg max |p

ω
ω ω

=
= x , (2) 

where p(ω|x) denotes posterior probability of the class being 
ω=1,2, given the random trial [ ]1 2, , dx x x=x …  and d 
denotes the number of selected features from the third stage. 

For further details on the FBCSP algorithm, the reader is 
referred to [9].  

III. PROPOSED APPROACHES OF MULTI-CLASS FCBSP 
In the following subsections, it is assumed that the classes 

ω,ω′∈{1,2,3,4} where {1,2,3,4} represent the left, right, foot 
and tongue motor imagery for 4-class MI-BCI. 

A. One-Versus-Rest (OVR) Approach 
The proposed OVR approach [4] computes CSP features 

that discriminates each class from all the other classes. 
However, instead of performing a Linear Discriminant 
Analysis multi-class classification on all the projected signals 
[4], the proposed OVR approach uses multiple binary 
NBPW classifiers. Hence 4 OVR classifiers are required for 
the 4-class MI-BCI. The classification rule of the NBPW 

classifier is extended from (2) to  
 ( )OVR

1,2,3,4
arg max |p

ω
ω ω

=
= x , (3) 

where ( )OVR |p ω x is the probability of classifying x between 

ω=1,2,3,4 and ω′={1,2,3,4}\ω; and \ denotes the set theoretic 
difference operation.  

B. Pair-wise (PW) Approach 
 The proposed Pair-Wise (PW) approach [6],[11] 

computes CSP features that discriminates every pair of 
classes. Hence 4(4−1)/2=6 binary classifiers are required for 
the 4-class MI-BCI. The classification rule of the NBPW 
classifier is thus extended from (2) to a majority voting 
scheme based on the predicted class labels from the binary 
classifiers using 

 ( ) ( )
4

PW PW
1,2,3,4 1

arg max | ' |p p
ω ω

ω ω

ω ω ω
= ′=

′≠

 
 = > 
  
∑ x x , (4) 

where ( )PW |p ω x  is the probability of classifying x between 

ω =1,2,3,4 and ω ω′ ≠ ; and the absolute operator ⋅  here 
returns 1 if it is true and 0 otherwise. 

C. Divide-and-Conquer Approach 
The proposed Divide-and-Conquer (DC) approach 

[12],[13] is similar to the OVR approach, but adopts a tree-
based classifier approach. Hence 4-1=3 binary classifiers are 
required for the 4-class MI-BCI. The classification rule of 
the NBPW classifier is thus extended from (2) to  

( ) ( )( )DC DC
1,2,...,4

min arg max | ' | | 'p p
ω

ω ω ω ω ω
=

 = > >  
x x , (5) 

where ( )DC |p ω x is the probability of classifying x between 

ω =1,2,3,4 and ω ω′ > ; and ( )| 0p ω′ =x  if ω′ =∅, and the 

absolute operator ⋅  here returns 1 if it is true and 0 
otherwise. The order of classification was pre-determined by 
10×10-fold cross-validations results of each class versus all 
the other classes. 

IV. EXPERIMENTAL RESULTS 
The multi-class FBCSP algorithm was evaluated on the 4-

class single-trial motor imagery data of BCI Competition IV 
dataset IIa [14], of which 1 training session and 1 evaluation 
session of EEG data from 9 subjects are provided. Each 
session comprised of 288 single trials. Fig. 2 shows how 
each trial of motor imagery is conducted. At the start of each 
trial, a fixation cross is displayed on the computer screen for 
2s. Subsequently, a visual cue instructs the subject to 
perform left-hand, right-hand, foot or tongue motor imagery 
for 4s, followed by a break period before the next trial.  

To train the multi-class FBCSP algorithm, the segment of 
0.5s to 2.5s of EEG data after the onset of the visual cue was 
used. The choice of m for the CSP algorithm in equation (1) 
was set to 2. 
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The performance of the proposed approaches of multi-
class extension to the FBCSP algorithm was evaluated on the 
training data using 10×10-fold cross-validations, and on the 
independent evaluation data. The performance measure used 
was the Kappa value, computed from the BIOSIG toolbox 
http://biosig.sourceforge.net/. The performance was 
evaluated on the entire single-trial EEG from the onset of the 
fixation cross using a sliding window of 2s. 
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Fig. 2: The FBCSP algorithm is trained on train_time_segment and 
evaluated on the entire segment of the single trial EEG data in 
test_time_segment. 

A. Multi-class FBCSP Performance Evaluation 
The 10×10-fold cross-validations results on the training 

data are shown in terms of mean validation Kappa value in 
Table 1. The independent test set performance of the FBCSP 
algorithm on the evaluation data in terms of mean Kappa 
values is shown in Table 2, where the best results for each 
subject are also shaded. The OVR approach was submitted 
to BCI Competition IV for dataset IIa and achieved the best 
mean Kappa value relative to the 2nd and 3rd placed 
submissions, denoted respectively in Table 2.  

 

TABLE 1 
10×10-FOLD CROSS-VALIDATIONS OF THE MULTI-CLASS FBCSP ALGORITHM  

1 2 3 4 5 6 7 8 9 AVG
OVR 0.77 0.48 0.83 0.49 0.61 0.35 0.84 0.81 0.78 0.66
PW 0.78 0.45 0.86 0.47 0.63 0.33 0.85 0.79 0.78 0.66
DC 0.73 0.44 0.81 0.42 0.63 0.36 0.83 0.78 0.76 0.64

Mean Kappa values on validation set for each subject

 
 

TABLE 2 
INDEPENDENT TEST SET EVALUATION OF MULTI-CLASS FBCSP ALGORITHM 

1 2 3 4 5 6 7 8 9 AVG
OVR 0.68 0.42 0.75 0.48 0.4 0.27 0.77 0.75 0.61 0.57
PW 0.78 0.41 0.75 0.53 0.42 0.19 0.8 0.74 0.54 0.57
DC 0.71 0.38 0.66 0.47 0.44 0.24 0.73 0.75 0.56 0.55
2nd 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69 0.52
3rd 0.38 0.18 0.48 0.33 0.07 0.14 0.29 0.49 0.44 0.31

Mean Kappa values on evaluation data for each subject

 
 

Statistical analysis using one-way ANOVA found no 
significant differences among the 3 proposed approaches      
(p-value = 0.96 for both tables). The OVR approach and the 
PW approach yielded the highest mean Kappa value. 
However the OVR approach is less computationally 
intensive since 4 OVR classifiers are used compared to 6 
PW classifiers. Statistical analysis using the paired t-test 
shows the performance of the OVR approach is better 
relative to the 2nd placed submission (p-value = 0.0475) 

B. Analysis of the OVR Approach on Evaluation Data 
Fig. 3 shows the time course of the Kappa values for the 

OVR approach. The maximum classification accuracy is 
achieved around 3s after the visual cue onset. This is 
consistent with the 0.5s to 2.5s of training data after the 
visual cue onset, used to train the multi-class FBCSP. 
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Fig. 3: Time course of Kappa value for the evaluation data, using the OVR 
approach to the multi-class FBCSP algorithm. The onset of the fixation 
cross and visual cue are set to 0s and 2s respectively. 

 

The frequency bands from which the MIBIF algorithm 
selects the discriminative CSP features are shown as 
histogram percentages in Fig. 4 for the 4 OVR classifiers and 
for all subjects. A darker level of shading was displayed for a 
frequency band which is frequently chosen. Examining 
Subject 7, the selected features were mostly from the 12-
28Hz bands that encompass the alpha / mu band and the beta 
band. These frequency bands have been shown to exhibit 
Event-Related Desynchronization / Synchronization 
(ERD/ERS) effects during motor imagery [1],[8],[15].  
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(d) Tongue 

Fig. 4: Histogram of features selected from specific filter bands for each 
classifier based on the OVR approach using all the training data. The 
vertical axis in each chart represents Subjects 1 to 9 from top to bottom. 
The horizontal axis represents the filter bands 1 to 9 from left to right.  

 

Further analysis is performed by plotting selected spatial 
patterns of the CSP feature pairs from Subject 7’s training 
data in Fig. 5. The left (right) hand motor imagery resulted in 
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the activation of the region around the right (left) motor 
cortex. The foot motor imagery resulted in the activation of 
the region closer to the midline. For the tongue motor 
imagery, activation around the motor cortex was also 
detected. These findings were consistent with the CSP scalp 
topographies in [4] and the concept of the human 
homunculus [3] , hence these spatial patterns showed the 
neurophysiological plausibility of the selected CSP features. 

 

- 0 +

- 0 +  
Left  

(20-24Hz) 

- 0 +

- 0 +  
Right 

(24-28Hz) 

- 0 +

- 0 +  
Foot 

(16-20Hz) 

- 0 +

- 0 +  
Tongue 

(20-24Hz) 
Fig. 5: Selected spatial patterns of the features for Subject 7 for each of the 
4 component classifiers in the OVR approach 

 

TABLE 3 
CONFUSION MATRIX OF THE EVALUATION DATA IN PERCENTAGE AVERAGED 

ACROSS ALL SUBJECTS 

Left Right Foot Tongue
Left 0.75 0.15 0.04 0.06

Right 0.10 0.79 0.06 0.05
Foot 0.11 0.15 0.54 0.20

Tongue 0.12 0.11 0.13 0.64

Predicted Class

Tr
ue

 C
la

ss

 

However, the spatial patterns of all the subjects were not 
fully consistent with neurophysiological plausibility. Studies 
on multi-class motor imagery showed that not all subjects 
exhibit ERD/ERS effects during motor imagery [16]. Hand 
motor imagery induced a significant ERD in all subjects, 
whereas foot and tongue motor imagery induced a significant 
ERS only in certain subjects [15]. Since the CSP algorithm is 
capable of extracting ERD effects [4], the FBCSP algorithm 
yielded relatively better performance on the hand motor 
imageries, compared to the tongue and foot motor imagery as 
shown in the confusion matrix of the evaluation data in Table 
3.  

V. CONCLUSION 
This paper investigated the performance of 3 approaches 

proposed for the multi-class extension to the Filter Bank 
Common Spatial Pattern (FBCSP) algorithm. As the CSP 
algorithm in FBCSP was originally formulated for binary-
class problems, these 3 proposed approaches decompose the 
multi-class motor imagery problem into several binary class 
problems. These 3 approaches were evaluated on the 4-class 
motor imagery data of BCI Competition IV dataset IIa. The 
experimental results showed no significant difference 
between the 3 proposed approaches. The One-versus-Rest 
(OVR) approach was submitted for the competition and 

performed the best on the evaluation data relative to the 
other submissions [10]. The results also showed the multi-
class FBCSP algorithm could extract features whose spatial 
patterns matched with neurophysiological knowledge [3]. 
The variability in the performance of the multi-class FBCSP 
algorithm on the different classes of motor imagery action 
across all subjects could be due to the presence or absence of 
ERD/ERS effects in certain motor imagery actions.  
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