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Abstract

The non-stationary nature of the electroencephalo-
gram (EEG) poses a major challenge for the successful
operation of a brain-computer interface (BCI) when de-
ployed over multiple sessions. The changes between the
early training measurements and the proceeding multi-
ple sessions can originate as a result of alterations in the
subject’s brain process, new cortical activities, change of
recording conditions and/or change of operation strate-
gies by the subject. These differences and alterations over
multiple sessions cause deterioration in BCI system per-
formance if periodic or continuous adaptation to the sig-
nal processing is not carried out. In this work, the covari-
ate shift is analyzed over multiple sessions to determine
the non-stationarity effects and an unsupervised adapta-
tion approach is employed to account for the degrading
effects this might have on performance. To improve the
system’s online performance, we propose a covariate shift
minimization (CSM) method, which takes into account the
distribution shift in the feature set domain to reduce the
feature set overlap and unbalance for different classes.
The analysis and the results demonstrate the importance
of CSM, as this method not only improves the accuracy of
the system, but also reduces the classification unbalance
for different classes by a significant amount.

1. Introduction

The goal of a brain-computer interface (BCI) is to pro-
vide a communication pathway between the brain and
an external device by converting electrophysiological or
metabolic brain activity into control signals for applica-
tions and devices. Commands directly encoded in neuro-
physiological signals provide an effective communication
corridor for patients suffering from motor impairments,
severe cerebral palsy and spinal cord injuries [12].

A major challenge for BCI research is the alteration in
brain activity occurring continuously in association with
diverse behavioral and mental states [3, 8]. The period of

time within which spectral properties of the EEG wave-
form can be considered stable is reasonably small, with
estimates ranging from 4s to 1 min [2]. Explicitly, the
two main sources of non-stationarity reported in [4, 10]
are; i) differences between the samples extracted from a
training session and the samples extracted during an on-
line session, ii) alteration in the users brain activity during
online operation. As a result, the general hypothesis that
the signals sampled in the training set follow a similar
probability distribution to the signals sampled in a future
test phase, or in an online situation, is violated [11]. This
covariate shift is even more severe, as the number of ses-
sions increase, resulting in unpredictable and deteriorat-
ing system performance.

Here, we present an unsupervised adaptation method
in which the feature set distribution is analyzed to esti-
mate the covariate shift between the feature distribution
of the training and test data. A careful examination re-
veals an increase in the classification unbalance between
classes as a result of the covariate shift, thus increasing the
bias towards one of the classes and a drop in classification
accuracy (CA). The classification unbalance is quantified
using a confusion matrix index (CI), cf. section 3.2. The
shift in distribution is estimated using a least squares fit-
ting polynomial and removed from the feature set. As a
result, the CI decreases and the CA improves.

The remainder of the paper is organized into three sec-
tions. Section 2 contains details on the datasets and acqui-
sition procedure. Section 3 explains the methodology for
preprocessing, feature extraction, feature selection, co-
variate shift minimization (CSM) and classification. Re-
sults are presented and discussed in section 4.

2. Data Acquisition and Configuration

The datasets used in this analysis is dataset IIb (9 sub-
jects, 5 sessions each) provided for the BCI competition
IV [1,6]. Three bipolar recordings (C3, Cz, and C4) were
made with a sampling frequency of 250 Hz. The cue-
based paradigm consisted of two classes, namely left hand
(class 1) and right hand (class 2). A detailed description
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of the data acquisition procedure is available at [1,6]. For
this analysis, we have used a constant time window of 0.5
to 2.5 seconds after the presentation of the instructional
cue in a trial for feature extraction and classification.

3. Methodology

Firstly subject specific-frequency bands are selected
using particle swarm optimization [7,9] to spectrally filter
the raw EEG. Common spatial pattern (CSP) filtering [4]
is then applied to the raw EEG datasets to spatially filter
the spectrally filtered data. An optimally designed CSP
filter is used to produce a surrogate data space which im-
proves the separability of two populations. The variances
of the CSP filtered channels are analysed for covariate
shift. A CSM method is then applied to minimize the
covariate shift in the features and classified using linear
discriminant analysis (LDA).

3.1. Common Spatial Patterns

The CSP filtering involves linearly projecting the mul-
tichannel EEG data into a new space by a weighted sum-
mation of the appropriate channels. This projection is
based on the simultaneous diagonalization of the covari-
ance matrices a and b from both classes so that the eigen-
values of covariance matrices sum to 1 [4].

Σa.W = (Σa + Σb).W.D (1)

Here, the diagonal matrix D contains the (generalized)
eigenvalues of Σa and the column vectors of W are the
filters for the CSP projections. Each EEG trial X can
be projected using the mapping matrix W as Z = WX .
By construction, the variance for a left movement imag-
ination is largest in the first row of Z = [z1, z2, zn] and
decreases for the subsequent rows. The opposite is the
case for a trial with right motor imagery. The appropriate
number of eigenvectors p from both sides is chosen as fil-
ters; generally a value of p between 1 and 3 from either
side of the eigenvector matrix is optimal [4]. For feature
extraction, the normalized variance of the surrogate data
channels is used, i.e.,

fi = vj/
2p∑

j=1

vj and vj = var(zj) (2)

Here, we would like to draw the reader’s attention to
the redundancy in the normalized features. As for sim-
plicity, to focus on non-stationarity, this analysis is based
on only two features for each trial, i.e., p=1, therefore,
only one normalized feature is sufficient as the other fea-
ture is entirely redundant. This is because one of the fea-
tures is the mirror image of the other pivoted around the
mean of 0.5 (e.g., if one feature value is 0.1 then the other

is 0.9, therefore, both are at a distance of 0.4 from the
mean of 0.5 i.e. mirrored across the mean).

3.2. Confusion matrix index

Here, we define a confusion matrix index (CI), for a bi-
nary class problem, which is derived from the confusion
matrix to explain the bias or the unbalance in the classifi-
cation. This is computed as:

CI = k−1.(a1 − a2) (3)

where, a1 and a2 are the correctly classified trials for class
1 and 2, respectively, and k is the total number of trials.
The value of CI lies between -1 and +1. CI close to -1
reflects a bias towards class 2, i.e., CA of class 2 is much
greater than class 1, and vice versa for the other class.

3.3. Covariate Shift Minimization

In this section we investigate the shift in distribution
and effects of this alteration in distribution on the clas-
sification accuracy and CI. We use a least square fitting
polynomial to estimate and predict the amount of covari-
ate shift. This polynomial model determines which input
features of the distribution drives responses and in what
direction. The equation for a polynomial fit on features f ,
of order h, over N trials, is defined as,

yi = a0 + a1fi + a2f
2
i + ...+ ahf

h
i (4)

i.e., Y = F.A. The coefficient matrix A is designed to
satisfy the linear equation; A = (FT .F )−1.FT .Y , where
T denotes transpose of a matrix.

The matrix A is continuously updated over N previ-
ous trials. As a result, the polynomial value at a current
trial n represents the shift using only a finite causal sub-
set of the previous N trials. This confines the adaptation
to only activate after N -1 trials, i.e., no adaptation is per-
formed on the initial N -1 trials, which are only used to
estimate the distribution trend. Here, we use a constant
subset of N=10 trials as a baseline to show the effective-
ness of the method. However, particular care should be
taken in choosing the trials subset as a very small N can
cause the polynomial to overfit as it can exaggerate mi-
nor fluctuations in the feature distribution, conversely, a
much larger subset can make the polynomial estimate ex-
cessively resistant to major shifts in distribution.

Figures 1B and 1D show feature distributions for the
training and the testing sessions. It is clearly evident that
the feature distribution has considerably changed from the
training to testing session. This is reflected in the CI value
of -0.67, i.e., a bias towards class 1. Figures 1A and 1C
show the polynomial fitting of the order 3 to the train-
ing and testing features distribution. A polynomial ap-
proximation when applied to the training feature distribu-
tion shows very little deviation from the optimum linear
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Figure 1. Feature distribution and pdf for
subject 5.
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Figure 2. Covariate shift estimate (CSE) and
CI relational plot.

classifier plane indicating that the model generated on the
training samples fits the training data precisely. However,
the polynomial approximation on the test session shows a
much higher deviation, explaining a significant alteration
in the test feature distribution. The covariate shift esti-
mate (CSE), Ψ, for a session with k trials is calculated
as the area enclosed by the polynomial, y, and the linear
classifier plane l:

Ψ =

∫ k

0
y(x)dx−

∫ k

0
l(x)dx (5)

Figure 2 shows a strong correlation between the CSE and
the CI. As the covariate shift increases, the CI increases.
Based on this analysis, we aim to reduce the covariate
shift, which in turn is expected to reduce the confusion
index and improve the accuracy and reliability for the pro-
ceeding multiple test sessions.

The estimated polynomial y, at trial n, which is an in-
dication of the shift, is removed and the feature for the re-
spective trial is readjusted by adding the common mean,
µ0, of the training feature distribution:

f
′

n = fn − yn + µ0 (6)

Figure 1E shows the feature distribution after the shift
is removed. As a result the LDA decision boundary of the
adjusted test session feature distribution now coincides
with the training distribution (cf. figure 1B and 1F).

The LDA decision boundary for feature vector x is cal-
culated as,

x.Σ−1(µ1 − µ2) + Σ−1(µ1 − µ2).µ0 (7)

Here, µ1, µ2 , µ0 and Σ are the means for classes 1 and
2, the joint distribution mean and the joint covariance of
the feature vectors respectively. As Σ, µ1, µ2 and µ0

are scalars in (7) due to the use of single feature per trial
for simplicity, the decision boundry can be simplified to
x + µ0 = 0 , i.e., the joint mean of the training distribu-
tion acts as the discrimination threshold. This justifies the
CSM method described by (6). Just to note this method
can be extended to any number of features per trial where
CSM can be applied to each feature vector independently
to remove the shift in distribution for each feature vector
explicitly.

4. Results and discussion

Table 1 compares the CA and CI for all the subjects
over 5 sessions with and without CSM. Out of 36 test ses-
sions for 9 subjects, CSM has helped to improve the CA
in 31 cases (p ≪0.001 achieved using a Repeated Mea-
sures One-way Analysis of Variance [5] RM-ANOVA).
The mean accuracy for all the subjects except the subject
3 has improved (no significant difference for subject 3).
An insight into the feature distribution of subject 3 re-
veals a high feature set overlap for different classes. Even
though the CI has decreased from 0.59 to 0.17, the dis-
tribution overlap is irremovable as the features severely
overlap (pdf overlap of 91% for two classes, cf. Figure
3).

The mean CI for 9 subjects has been decreased signifi-
cantly using CSM for all the subjects from 0.23 to 0.08
on average (RM-ANOVA: p ≪0.001). A notable im-
provement is the decrease in the CI for subject 5 from
0.51 to 0.02, therefore, increasing the CA by 8.8%. Here,
the reader’s attention should be drawn to the analysis of
the spectrally filtered variances of the original channels.
Figure 4 shows the relative increase in the subject’s per-
formance as the normalized difference between the mean
variance on channel C3-C4 and Cz increases. The plot
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tional plot.

indicates that the performance of the subjects is near ran-
dom (CA∼=50-60%) when the variance on Cz is almost
equal to or greater than the variance on C3 and C4. The
performance of the BCI system is superior when this vari-
ance relationship factor increases. This information can
be used not only to predict the subject’s performance in
screening sessions, but also for channel selection for a
multiple channel system. This is a topic of future re-
search.

Using CSM, a more accurate system with low CI has
resulted in a balanced BCI performance, which is impor-
tant for the application of un/semi-supervised adaptation
methods. Future work will also be aimed at analyzing
the semi-supervised learning approach where confidence
bounds would be used to label the online trials to adapt
and reconfigure the classifier model continuously. The
semi-supervised learning approach would be applied in
series with the CSM as, importantly, CSM provides an un-
biased and a balanced classification output to the learning
module for more accurate and unbiased label estimates
for learning.
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