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ABSTRACT

A major limitation of Brain-Computer Interfaces (BCI) is
their long calibration time, as much data from the user must
be collected in order to tune the BCI for this target user. In
this paper, we propose a new method to reduce this calibra-
tion time by using data from other subjects. More precisely,
we propose an algorithm to regularize the Common Spatial
Patterns (CSP) and Linear Discriminant Analysis (LDA) al-
gorithms based on the data from a subset of automatically
selected subjects. An evaluation of our approach showed that
our method significantly outperformed the standard BCI de-
sign especially when the amount of data from the target user
is small. Thus, our approach helps in reducing the amount of
data needed to achieve a given performance level.

Index Terms— Brain-Computer Interfaces (BCI), subject-
to-subject transfer, regularization

1. INTRODUCTION

Brain-Computer Interfaces (BCI) are communication systems
that enable subjects to send commands to computers by using
only their brain activity [1]. Most existing BCI are based on
ElectroEncephaloGraphy (EEG) as the measure of brain ac-
tivity [1]. A major limitation of BCI is that many examples
of the subject’s EEG signals must be recorded in order to cal-
ibrate the BCI, which is inconvenient and time consuming.
Indeed, due to large inter-subject variabilities, each BCI must
be tuned specifically for the corresponding subject.

To our best knowledge, few studies have addressed the
problem of calibration time reduction for BCI. Exceptions are
the works in [2, 3]. In [2], the calibration time is reduced by
using data recorded from the same user, during previous BCI
sessions. As such, this method cannot be used for a new BCI
user, with no previous data available. In [3], a BCI is first
built using very few signals from the target user. Then the
BCl is adapted online using unsupervised learning. The limi-
tation is that this BCI will have initially limited performance,
becoming good only after a significant adaptation time.

In this paper, we propose to use EEG data from other sub-
jects in the calibration process of the BCI. This aims at build-
ing an initially good BCI by using only a small amount of
data from the new target user, hence reducing the calibration
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time. This paper is organized as follows: Section 2 describes
the motivation and the principle of our approach. Then, Sec-
tion 3 describes the evaluation of the proposed method and
the obtained results. Finally, Section 4 concludes the paper.

2. METHOD

Our hypothesis is that despite large inter-subject variabilities,
it is still possible to find common information in the EEG sig-
nals of some subjects. Thus, such information from additional
subjects could be used to design a robust BCI even when little
data from the target subject is available.

In this paper, we propose to use data from other subjects
in the learning process of the Common Spatial Patterns (CSP)
[4] and Linear Discriminant Analysis (LDA) algorithms [5].
These are indeed among the most popular and efficient algo-
rithms used for BCI design [5, 6, 4]. However, it should be
mentioned that our approach can be easily applied to other
similar machine learning techniques.

2.1. The CSP and LDA algorithms

The CSP algorithm aims at learning spatial filters which can
maximize the variance of the EEG signals from one class,
while minimizing the variance of the EEG signals from the
other class, hence achieving optimal discrimination [4]. More
formally, when training the CSP, the obtained spatial filters w
are the filters which maximize the following function:

wCiwT

w(Cy + Co)wT M

where C; is the spatial covariance matrix of the EEG signals
from class 7. This optimization problem is solved by jointly
diagonalizing the two matrices Cy and (Cy + C3) [4]. Once
the filters w have been obtained, CSP feature extraction con-
sists in spatially filtering the EEG signals using the w and then
computing the variance of the resulting signals.

The LDA classifier uses a linear hyperplane to separate
feature vectors from two classes [5]. The intercept b and nor-
mal vector a of this hyperplane are computed as follow:

1
b= =5 +p2)C (un = p2)" and a = C~* (1 = pa)”
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with p; and o being the mean feature vector for each class
and C the covariance matrix of both classes. With LDA, for
an input feature vector x, the classification output is a”z + b.

2.2. Learning from other subjects

Both the CSP and LDA approaches are based on the estima-
tion of the class covariance matrices. Much data is required
to obtain proper estimates of these matrices, explaining why
much training data is required to design a robust BCL. In or-
der to train the CSP and LDA with less training data, hence
reducing the BCI calibration time, we propose to incorporate
information from other subjects as a regularization term in the
estimation of the covariances matrices:

- 1
Co=1-XNCp + A C; 3
L =(1-NC, ‘St(“)‘igm 3)

where C} is a covariance matrix estimated from the data of
the target subject, € is a set of subjects whose data has been
recorded previously, |A| is the number of elements in set A,
A is the regularization parameter (A € [0, 1]), S¢(€) is a sub-
set of subjects from €2, and C; is a covariance matrix esti-
mated from the data of subject 7. The aim of this regular-
ization scheme is to obtain a better and more robust estimate
of the covariance matrix by using covariance matrices from
other subjects for which much data is available. This should
lead to better classification performances, especially when lit-
tle data is available for the target subject.

With our approach, incorporating information from other
subjects into the training of CSP or LDA simply consists in
replacing the covariance matrices from Eq. 1 and 2 by their
regularized estimates from Eq. 3. To train the LDA classifier,
the mean feature vectors p are similarly regularized:

1
B= (1= N+ Ao ; 4
fir = (1= N ‘St(Q)‘ieSzt(:Q),u )

This approach raises two questions: 1) How to select a
good subset of additional subjects S;(©2) and 2) how to ef-
ficiently select the value of the regularization parameter \?
These two questions are addressed in the following sections.

2.3. Selecting a relevant subset of additional subjects

Even if data from many subjects is available, all these sub-
jects may not be relevant to use due to the huge inter-subject
variability. Rather, we should select a subset of subjects
whose data can be used to classify the target subject’s data.
To do so, we propose the subject selection algorithm de-
scribed in Algorithm 1. In this algorithm, the function
accuracy = trainThenTest(trainingSet, testingSet)
returns the accuracy obtained when training the CSP and
LDA on the data set trainingSet and testing them on data
set testingSet. The function (best;, max ;) = max; f(i)
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returns best;, the value of ¢ for which f(¢) is maximum (this
maximum value is denoted max ;).

Input: D;: training EEG data from the target subject.
Input: Q = {D,}, s € [0, Ns]: set of EEG data from the N
other subjects available (D; > Q).
Output: S;(2): a subset of relevant subjects whose data can
be used to classify the data D, of the target subject.
Output: selected Acc: the accuracy obtained when
classifying D; using a BCI trained on the subset of
selected additional subjects S;(€2).
selectedo = {};
remainingo = €2;
accuracyo =0;n = 1;
while n < N, do
Step 1: (bestSubject, best Accuracy) =
MATscremaining, , trainThenTest(selected, 1+
{Ds }, D, ) 5
selectedy = selected,—1 + { DvestSubject }3
reMaining, = remainingn—1 - { DpestSubject }5
accuracyy = best Accuracy;
n=n+1;
Step 2: if n > 2 then
(bestSubject, best Accuracy) =
MaTseselected, trainThenTest(selected, —
{D S}v D i);
if best Accuracy > accuracyn—1 then
selected,—1 = selected,, - { Dvestsubject }
reMainingn—1 = remaining, +
{Dyestsubject }5
accuracyn—1 = best Accuracy;
n=n-—1;
go to Step 2;
else
go to Step 1;
end
end
end
(bestN, selectedAcc) = maz,ep,N,)
S¢(02) = selectedpesin;
Algorithm 1: Subject selection algorithm

accuracyn;

In short, this algorithm sequentially selects the subject to
add or to remove from the current subset of subjects, in or-
der to maximize the accuracy obtained when training the BCI
on the data from this subset of subjects and testing it on the
training data of the target subject. This algorithm has the same
structure as the Sequential Forward Floating Search algorithm
[7], used to select a relevant subset of features. This ensures
the convergence of our algorithm as well as the selection of a
good subset of additional subjects.

2.4. Selecting an appropriate regularization parameter

Another problem to solve is the selection of the regulariza-
tion parameter A in Eq. 3 and 4. This parameter specifies the
proportion of data from the additional subjects that will be



used in the learning process. Here, selecting A using cross-
validation (CV) is not recommended because 1) CV is a very
time consuming approach, and 2) our method is aimed at be-
ing used with a small training set for the target subject. There-
fore, it would not be reasonable to waste some precious train-
ing data when dividing the data set using CV. Rather, we pro-
pose the following computationally efficient heuristic to se-
lect an appropriate value for \:

1. Compute the classification accuracy targetAcc ob-
tained when using only the EEG signals from the target
subject to train the BCIL, by using Leave-One-Out Validation
(LOOV) on the target subject training set. Indeed, LOOV
removes only a single training example for evaluation.

2. Compute the classification accuracy selected Acc ob-
tained when classifying the target subject training set with a
BCl trained using only the EEG signals from the selected sub-
jects in Sy (©2) (see Algorithm 1).

3. Compute the accuracy RandAcc obtained by a classi-
fier performing at the chance level (e.g., 50% for 2 classes).

4. Determine the value of \ as follows:

1 targetAcc < RandAce
A= 0 targetAcc > selected Acc

selected Acc—targetAcc

100— RandAcc otherwise

(6))
This heuristic considers that if the data from the tar-
get subject is not appropriate to train a satisfactory BCI
(targetAce < RandAcc), then we should rely only on
the data from the other subjects (A = 1.0). If the clas-
sification performance expected when using only the data
from the target user is better than that expected when us-
ing only the other subjects (targetAcc > selectedAcc),
then we should rely only on the data from the target sub-
ject (A = 0.0). The remaining case corresponds to the
accuracy expected when using only the other subjects being
higher than that expected when using only the target subject
(targetAcc < selectedAcc). 1In this case, the higher the
difference between these two expected accuracies, the higher
lambda should be as we should give more confidence to the
EEG signals from the other subjects.

3. EVALUATION

3.1. EEG Data Set

Our approach was evaluated on data set 2a from BCI com-
petition IV [8], provided by the Graz group [9]. This set
comprises EEG signals from 9 subjects who performed left
hand, right hand, foot and tongue Motor Imagery (MI). The
EEG signals were recorded using 22 EEG channels. For the
purpose of this study, only EEG signals corresponding to left
and right hand MI were used. EEG signals were band-pass
filtered in the 8-30 Hz frequency band using a 5" order But-
terworth filter. Indeed, this frequency band contains the main
frequencies involved in MI [6].
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A training and a testing set were available for each sub-
ject. Both sets contained 72 trials for each class, the duration
of a trial being 7 sec. Subjects performed MI within the time
interval of t=3 to 7 sec of each trial. In this work, we only
considered the discrete classification of the trials, i.e., we as-
signed a class to each trial and not to each trial sample. In
order to do so, we extracted the CSP features from the time
segment t=3.5 to 5.5 sec of each trial, as this was the segment
used by the BCI competition winner [8]. Concerning the CSP,
we used the 3 most discriminative pairs of filters (correspond-
ing to the highest eigenvalues) for feature extraction.

3.2. Results

We compared the performances obtained by our approach,
which includes information from other subjects in the CSP
and LDA training, with the standard BCI design, which trains
the CSP and LDA using only the EEG data from the tar-
get subject. We also compared our approach with a regu-
larized variant of CSP and LDA, based on diagonal load-
ing. More precisely, we used regularized covariance matri-
ces C; = C; + kI in Eq. 1 and 2, with I being the iden-
tity matrix and « the regularization parameter, here automat-
ically selected using Ledoit and Wolf’s method [10]. To our
best knowledge, this BCI design, based on diagonal loading
in CSP and LDA, has not been studied in the literature.

To assess whether our approach could reduce the number
of training examples required from the target subject, we per-
formed these comparisons with different sizes for the train-
ing set of the target subject. When evaluating the three ap-
proaches on a given subject, this subject was used as the tar-
get subject and the 8 other subjects were used as the set of ad-
ditional subjects 2. Evaluations were performed while using
only the N first trials from each class from the target subject’s
training set. The data used for the additional subjects in {2 was
their full training set. Once the BCI trained, it was evaluated
on the test set of the target user, for which all data were used,
i.e, 72 trials per class. The average classification accuracies
obtained (over all subjects) are displayed on Figure 1.

On the data set used, our results suggested that incorpo-
rating information from other subjects in the training of CSP
and LDA can improve the classification accuracy of the BCI,
especially when the amount of training data for the target sub-
ject is small. When a sufficient amount of data was avail-
able for training, e.g., for N = 72, our BCI design and the
standard BCI design reached similar performances. How-
ever, when the amount of available data was very limited,
our method outperformed the standard design. In the most
striking case, for N = 10, our method reached an average
accuracy nearly 10 % higher than that obtained with the stan-
dard design. Interestingly enough, a paired t-test revealed
that the average classification accuracy (over all subjects and
all NV values) obtained by our BCI design was statistically
higher than that obtained by both the standard BCI design
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Fig. 1. Average classification accuracies according to the
number of training data available for the target subject.

(p < 0.001) and the regularized BCI design based on diago-
nal loading (p < 0.05).

Results also suggested that this approach could be used to
reduce the BCI calibration time for a new user, by reducing
the amount of data required from this user. For example, on
the data set used, in order to obtain the same classification
accuracy as the one obtained by the standard design with 30
training trials per class, our approach needs only 10 trials per
class (see Figure 1). Moreover, Blankertz et al suggested that
approximately 40 trials per class were necessary to obtain rea-
sonable BCI performances [11]. In this study, our approach
obtained the same performance as the standard BCI design
with 40 trials per class while using only 20 trials per class.

Finally, it should be noted that our approach is also com-
putationally efficient. Indeed, on this data set, the average
runtime was 92.9 s for N=72 data per class for the target sub-
ject, 55.3 s for N=40 and 36.4 s for N=10. The machine used
was an Intel Core 2 Quad CPU @ 2.83 GHz with 4 Go RAM,
Windows Vista and MATLAB 7.4.

4. CONCLUSION

In this paper, we proposed a method to reduce the BCI cal-
ibration time for a new user thanks to the incorporation of
information from other subjects into the learning process of
CSP and LDA. More precisely, we proposed to regularize the
mean vectors and covariance matrices used in the CSP and
LDA training with the mean vectors and covariance matrices
estimated from a subset of relevant subjects. We proposed
an algorithm to select automatically this relevant subset of
subjects for a given target user, as well as a method to se-
lect automatically the extent of the regularization. The whole
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approach is easy to implement and computationally efficient.
An evaluation of this approach on data set 2a from BCI com-
petition IV showed that it could outperform both the standard
BClI design and a regularized BCI based on diagonal loading,
both using only the data from the target user. This improve-
ment was generally higher when the amount of data from the
user was small. This suggested that our approach can be used
to train a BCI for a new user with less data from this user than
the standard approach, hence reducing the calibration time.

Future work will be dedicated to study this method with
a larger pool of subjects, including disabled subjects (e.g.,
stroke patients), in order to assess whether patients may also
benefit from this approach. Indeed, it may be more difficult
to find common information between stroke patients than be-
tween healthy users.
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