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Abstract

We propose a novel linear discriminant analysis
method and demonstrate its superiority over existing
linear methods. Based on information theory, we intro-
duce a non-parametric estimate of mutual information
with variable kernel bandwidth. Furthermore, we de-
rive a gradient-based optimization algorithm for learn-
ing the optimal linear reduction vectors which maxi-
mizes the mutual information estimate. We evaluate the
proposed method by running cross-validation on 2 data
sets from the UCI repository, together with linear and
nonlinear SVMs as classifiers. The result attests to the
superority of the method over conventional LDA and
its variant, aPAC.

Keywords-discrminant analysis, feature extraction,
mutual information

I.. Introduction

Discriminant analysis (DA) consistutes a major sub-
ject in pattern recognition, and its goal is to find a low-
dimensional subspace in which the class separability
is maximized. The most widely-used DA method is
known as Fisher linear discriminant analysis (LDA)
[4], which is optimal for 2-class problems under the
homoscedastic condition that all classes are Gaussian
with equal covariance matrices.

The nonoptimality or sub-optimality of LDA is
well-established in the literature (see [5], [10]). Specifi-
cally, neither is it able to deal with heteroscedastic data
(i.e. classes do not have equal covariance matrices),
nor it is Bayes optimal for >2-class problems even
if homoscedastic condition is met. Heteroscedastic
discriminant analysis (HDA) [8] was proposed that
relieves LDA’s homoscedasticity assumption, such that
all the classes could have different covariance matrices.
However, HDA was devised for uni-modal Gaussians,

where data in many practical problems are more com-
plex in nature.

In [10], the authors provided a unifying view of
the criteria used by LDA, HDA, and another DA
approach termed maximum mutual information (MMI),
the last being of particular interest in this work. They
introduced a hierarchy of models, from homoscedastic
Gaussian model (HOG), Kumar and Andreou’s het-
eroscedastic class-conditional Gaussian model (KAH),
to a more general model called zero-information-loss
model (ZIL). In this hierarchy, HOG is a special case
of KAH, which is in turn a special case of ZIL.
Furthermore, MMI is Bayesian optimal under ZIL.

Therefore, MMI can deal with more complex class
distributions. Furthermore, MMI, which stems from in-
formation theory, naturally addresses multi-class prob-
lems. Thus, in recent years there were a few papers
promoting MMI for DA [7], [6].

However, there were two limitations with the pre-
vious MMI-based DA works. First, they used Renyi’s
quadratic entropy in favor of its lower computational
complexity, while that entropy generally deviated from
Shannon’s entropy. Second, the kernel bandwidth pa-
rameter was fixed, which would lead to problems in
DA (see a discussion at the end of Section II).

In this paper we propose a new MMI method
and demonstrate its superority over the conventional
ones. The method is built up using a non-parametric
(kernel-based) estimate of mutual information with
Shannon’s entropy. Particularly, the kernel width is
variable and determined by the variable in the DA
subspace. Furthermore, we derive from the estimate
a gradient-based optimization algorithm.

The method is evaluated using cross-validation on
2 data sets from the UCI repository. A linear and
nonlinear SVMs are used to test the separability of
classes in the subspace created by the method. Con-
ventional LDA and its variant called approximate pair-
wise accuracy criterion(aPAC) [9] were compared.
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Clearly positive results are obtained, analyzed and
discussed.

II.. Robust Mutual Information Estimate

Consider a sample in the original space x. It is
mapped to y in a subspace by a linear projection

y = Wx. (1)

The projection matrix W comprises nw column vec-
tors. Denote the variable in the subspace by Y , and the
categorical variable of class labels by C. The mutual
information between Y and C is

I(Y, C) = H(Y) − H(Y|C)
= H(Y) −

∑

c∈C
H(Y|c)P (c), (2)

where c is a particular class label. The entropy H(Y)
is determined by p.d.f py(y):

H(Y) = −
∫

y
py(y)ln (py(y)) dy. (3)

Like in [11], the entropy of the pattern variable Y
can be expressed as an expectation of the function,
ln(p(y))

H(Y) = −E[ln(py(y))] ∼= − 1
ny

ny∑

i=1

ln(py(yi)), (4)

where yi denotes the i-th example in the training data,
i = 1, . . . , ny .

Subsequently, py(y) can be estimated using kernel
density estimation:

p̂y(y) =
1
ny

ny∑

i=1

ϕ(y − yi), (5)

where

ϕ(y − yi) = αexp
(
−1

2
(y − yi)T Ψ−1(y − yi)

)
,

(6)
Here yi is a given example of the control signal
variable, α is a factor that makes the integration of
Eq. 5 become 1. The symbol Ψ denotes the bandwidth
diagonal matrix of the Gaussian kernel, computed by

ψk,k = ζ
1

ny − 1

ny∑

i=1

(yik − ȳk)2 (7)

where ȳk is the empirical mean of yk, the coeffi-

cient ζ =
(

4
3nz

)0.1
according to the normal optimal

smoothing strategy [1]. Clearly, ψk,k is a function of
the DA linear projection W .

By substituting equation (5) into equations (4), the
entropy of feature-vector variable can be estimated
using

Ĥ(Y) = − 1
na

na∑

i=1

ln

⎧
⎨

⎩
1
na

na∑

j=1

ϕ(yi − yj)

⎫
⎬

⎭ , (8)

and the conditional intra-class entropy Ĥ(Y|c) can be
estimated similarly by using class c examples only.

The mutual information estimate becomes

Î(Y, C) = Ĥ(Y) −
∑

c

P (c)Ĥ(Y|c) (9)

A. Optimization Algorithm

Consider the k-th vector in the linear transforma-
tion matrix: wk. From Eq. 2, the gradient of mutual
information estimate with respect to wk is

∇wkI(Y, C) = ∇wkH(Y) −
∑

c∈C
P (c)∇wkH(Y|c)

(10)
From Eq. 8, we have

∇wkH(Y) = − 1
na

na∑

i=1

βi
1
na

na∑

j=1

∂ϕ(yi − yj)
∂wk

(11)

where

βi =

⎛

⎝ 1
na

na∑

j=1

ϕ(yi − yj)

⎞

⎠
−1

(12)

From Eq. 6, we have

∂ϕ(yi − yj)
∂wk

= −1
2
ϕ(yi−yj)

∂(yi − yj)T Ψ−1(yi − yj)
∂wk

(13)
Let’s denote the quadratic function

(yi − yj)T Ψ−1(yi − yj) by ϑij . And, ϑij can
be decomposed as below.

ϑij =
do∑

k1=1

do∑

k2=1

ψ−1
k1k2

(yik1 − yjk1)(yik2 − yjk2) (14)

The gradient of ϑij is

∂ϑij

∂wk
=

do∑

k1=1

do∑

k2=1

[
∂ψ−1

k1k2

∂wk
(yik1 − yjk1)(yik2 − yjk2)

+ψ−1
k1k2

∂(yik1 − yjk1)(yik2 − yjk2)
∂wk

]
(15)

Consider that (yik1 − yjk2)2 is a function of wk

if and only if k1 = k and/or k2 = k, and ψ−1
k1k2

is a function of wk if and only if k1 = k2 = k.
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Furthermore, ψ−1
k1k2

= 0 if k1 ̸= k or k2 ̸= k. The
expression of the gradient above can be written as

∂ϑij

∂wk
=
∂ψ−1

kk

∂wk
+ ψ−1

kk1

∂(yik − yjk)2

∂wk
(16)

We further develop the above expression of gradi-
ent. To compute ∂ψ−1

kk
∂wk

, it follows from Eq. 7 that

∂ψ−1
kk

∂wk
=
η

2
∂
(
wT

k Φwk

)

∂wk
= ηΦwk (17)

where
η = −2ζ−1

(
wT

k Φwk

)−2
(18)

and x̄ is the empirical mean of x, and Φ the empirical
covariance matrix of x.

And

∂(yik − yjk)2

∂wk
= 2(xi − xj)(xi − xj)T wk (19)

With the above equations, we can write the gradient
of the mutual information estimate as below

∇wkH(Y) = Awk (20)

where

A =
1

2n2
a

na∑

i=1

βi

na∑

j=1

ϕ(yi − yj) [ηΦ+

2ψ−1
kk (xi − xj)(xi − xj)T

]
(21)

Similarly for class-conditional entropy, we have Ac.
Therefore, the gradient of the mutual information is

∇wkI(Y, C) =

(
A −

∑

c

P (c)Ac

)
wk (22)

With the above equations, we are able to explicitly
compute the gradient for each projection vector wk.
We can use an iterative optimization procedure with
the following updating function

w(niter+1)
k = w(niter)

k + λ∇wkI(niter)(Y, C) (23)

where λ is the step size.

III.. Results

We conduct an preliminary experimental study
through 5 rounds of 5-fold cross-validtion for assessing
the performance of the method.. Two data sets were
selected from the UCI repository. See Table III for
their specifications.

The cross-validation technique assesses how the
results generated by the methods will generalize to
an independent data set. Each round of 5-fold cross-
validation involves partitioning a sample of data into

Name no. pattern no. attribute no. class

Wine 178 13 3
Yeast 1484 8 10

Table III. Datasets Description.

5 subsets, alternately performing the learning on one
subset (called the training set), and validating the
learned model on the others (aggregated as the test
set). Five rounds of cross-validation are performed
using different partitions of data in order to reduce
variability. The partitions are randomly generated us-
ing the cross-validation function “crossvalind” in the
MATLAB Bioinformatics toolbox.

The peformance is assessed as the separability of
the output features, in terms of classification accuracy
by both linear and nonlinear classifiers, including a lin-
ear support vector machine (SVM-L) and a Gaussian-
kernel support vector machine (SVM-G) (using the
LIBSVM toolbox[2]).

Two conventional DA method, LDA and aPAC are
implemented and compared with the proposed method.
It is noteworthy that, since the optimization algorithm
for this method depends on the initial condition, we
use the projection matrix by LDA or aPAC as the
initial guess and carry out optimization. Consequently,
we denote the proposed method using the two initial
conditions by LDA-MMILA and aPAC-MMILA, re-
spectively. Besides, convergency investigation of the
optimization algorithm is beyond the scope of this
paper. Tentatively, the algorithm stops after 5 iterations.

The results are summarized in Table I and II.
Regardless of the number of output dimension or the
choice of classifier, the present method consistently
yielded the lowest classification error, in both data
sets except in one case (Dataset Wine, SVM-G, 8
dimensional subspace).

It is interesting to note that the comparative results
were data dependent. For the dataset Wine, the meth-
ods except aPAC-MMILA produced quite comparable
results, in view of the close mean error rates and the
relatively large STD. For the dataset Yeast, MMILA
methods produced significantly lower mean error rates.
It is worthwhile to mention that, aPAC-MMILA was
winning all the cases while aPAC itself lost to LDA.
A plausible explanation is that, although LDA outper-
formed aPAC, it likely produced a strong local mini-
mum that prevented the optimization procedure from
evolving to a better solution. Thus, the optimization
algorithm may be improved so as to overcome the local
minimum problem, by using e.g. stochastic mechanism
[3]).
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DA Method SVM-L SVM-G
2 4 6 8 2 4 6 8

LDA 1.3(1.7) 1.6(1.8) 1.8(1.4) 1.8(1.8) 1.1(1.4) 1.0(1.4) 1.0(1.4) 1.0(1.4)
aPAC 5.4(4.2) 5.2(3.8) 5.1(3.7) 4.9(3.7) 6.9(5.0) 6.4(5.5) 7.0(5.7) 6.9(5.4)

LDA-MMILA 1.2(1.6) 1.1(1.6) 1.8(1.4) 1.5(1.8) 1.0(1.4) 0.9(1.3) 0.9(1.6) 1.3(1.6)
aPAC-MMILA 1.6(2.0) 1.5(1.8) 1.8(2.3) 1.6(1.8) 1.4(1.9) 0.8(1.5) 1.1(1.8) 1.2(2.2)

Table I. Dataset Wine. Classification error rates from 5×5 cross-validation are displayed in
Mean(STD)% format. The lowest error rate in each column is in BOLD style. The numbers below
the classifiers denote the dimensionality of the DA subspace.

DA Method SVM-L SVM-G
2 3 4 5 2 3 4 5

LDA 65.4(2.3) 59.5(2.1) 51.0(2.3) 44.5(2.8) 59.7(2.4) 58.9(3.3) 51.2(2.4) 45.0(1.6)
aPAC 61.7(2.2) 60.4(2.1) 57.8(2.0) 54.7(2.4) 64.2(3.2) 60.8(2.4) 57.5(2.2) 53.2(2.4)

LDA-MMILA 55.8(5.0) 52.8(3.9) 44.9(2.5) 44.2(2.5) 55.5(5.1) 54.6(3.9) 46.0(2.5) 44.4(2.5)
aPAC-MMILA 47.7(2.2) 45.4(2.1) 43.2(3.1) 43.3(3.1) 46.0(2.1) 43.5(2.3) 41.5(2.6) 42.2(2.3)

Table II. Dataset Yeast. See the caption of Table I for explanation.

IV.. Conclusion

We have proposed a linear discriminant analysis
method and demonstrated its superiority over LDA and
aPAC through a preliminary study using 2 benchmark
datasets. The favarable result can be attributed to
the basis of the method, a non-parametric estimate
of mutual information which is dependent upon the
underlying data distributions. The preliminary study
also indicate that, by running 5-iterations of the opti-
mization algorithm (devised for maximizing the mu-
tual information estimate), significantly higher class
separability can be achieved in the resultant lower-
dimensional subspace, compared with that by LDA and
aPAC. Therefore, we suggest that futher research shall
further improve and establish the efficacy of the mutual
information estimate and the optimization algorithm,
or to extend them for nonlinear discriminant analysis.
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