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ABSTRACT

Optimum linear transformation under mixture of zero-mean
Gaussian conditions is an intriguing problem, especially in
learning discriminative spatial components in motor imagery
EEG for building brain computer interfaces. However, it is
not well addressed in the past. In this paper, we study opti-
mum linear transformation under mixture of zero-mean Gaus-
sian. In particular, we formulate optimum transformation as
a Bhattacharyya error bound minimization problem, and de-
rive a numerical solution to estimate the bound from train-
ing samples. Based on the solution, we develop an algorithm
for selecting optimum linear transformation. The proposed
method is evaluated, in comparison with the state-of-the-art
methods, using a publicly available data set of motor imagery
EEG. The results attest to the superiority of the method for
detecting motor imagery.

Index Terms— Linear transformation, classification, mo-
tor imagery EEG

1. INTRODUCTION

Motor imagery EEG based Brain-Computer Interface is at-
tracting increasing attention from multi-disciplinary fields [1,
2]. In learning and classifying the signal of motor imagery
EEG, linear transformation in the form of spatial filtering has
been widely used to transform and reduce multi-channel EEG
into a few variables that represent the brain signal of interest
[3]. This transformation, as a means of improving signal to
noise ratio, is important since motor imagery EEG is weak,
vulnerable to noise corruptions and blurred spatially[4, 5].

The most successful linear transformation method so far
is known as the common spatial pattern (CSP) technique [6]
or its variants [7, 8, 9]. An experimental study [10] reported
that CSP could lead to a higher accuracy of motor imagery
EEG classification than independent component analysis.
Designed for two-class classification, the CSP technique con-
structs linear transformation (spatial filters) that maximizes
the variance of (usually band-pass filtered) EEG for one class
while minimizing it for the other one [11]. Thus, from neu-
rophysiology, CSP captures strong or attenuated rhythmic

activities that are associated with the Event-Related Desyn-
chronization/Synchronization (ERD/ERS) effects of motor
imagery [12].

However, inherent multiple manifestations of EEG may
render CSP insufficient. This is especially prominent if one
wants to differentiate motor imagery EEG from EEG in the so
called non-control (NC) class (see [13]), which comprises any
possible signals other than motor imagery. The NC class can
produce rather complex patterns due to the shear complexity
of brain activities. On the other hand, CSP was designed for
uni-modal Gaussians only. Thus, new techniques are called
for that better account for high complexity and variability of
EEG.

We propose a novel method for learning optimal linear
transformation for detecting motor imagery EEG, i.e. classi-
fying motor imagery EEG against NC EEG. First, we formu-
late the learning task into a problem of Bhattacharyya error
bound minimization, where the NC class is described by a
mixture of Gaussian (MOG) and the motor imagery class by
a uni-modal Gaussian. We derive a numerical solution to es-
timate the error bound from training EEG samples, and use it
to develop an algorithm for selecting optimal transformation.
We evaluate this method in comparison with the state-of-the-
arts, using a data set from BCI Competition IV [14].

2. METHOD

Denote a time sequence of multi-channel EEG sample by
x(t), where x is the vector consisting of electrical potentials
at each EEG site on the scalp, and t is the time variable. A
linear transformation of x(t) using a matrix W performs by

y(t) = WT x(t), (1)

Here W = [w1,w2, ...,wN ] consists of N linear vectors.
Effectively, each w performs a spatial filtering that combines
electrical potentials from different locations on the scalp.

For motor imagery EEG analysis, usually a band-pass fil-
ter is applied before hand to capture rhythmic process in EEG
associated with motor imagery. As a result, the mean value
of EEG samples becomes zero. Then the EEG samples from
the motor imagery class ωp can be described by a zero-mean
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uni-Gaussian distribution function p(xi|ωp) characterized by
a covariance matrix ψp. The NC class ωn can be modelled by
a MOG function p(x|ωn) consisting of M sub-states

p(x|ωn) ∼
M∑

j=1

P̃ (χj)N (0, ψ̃j) (2)

where P̃ (χj) is the prior probability of each sub-state in NC,
and N () denotes the corresponding Gaussian distribution
function with zero mean and covariance matrix ψ̃j .

After linear transformation by W , the distributions of the
two classes become

p(y|ωp) ∼ N (0,ψp(y)), (3)

p(y|ωn) ∼
M∑

j=1

P̃ (χj)N (0, ψ̃j(y)), (4)

where ψp(y) = WT ψpW and ψ̃j(y) = WT ψ̃jW
The objective of optimal linear transformation is to find

the W which results in the most separable classes, i.e. lowest
Bayesian classification error rate for y ∈ ωp vs. y ∈ ωn.
Instead of using the original Bayesian classification error rate
which is difficult to compute, we introduce an estimate of up-
per bound, i.e. the Bhattacharyya bound [15].

ϵB(y) =
√

P (ωp)P (ωn)
∫ √

p(y|ωp)p(y|ωn)dy. (5)

Now we derive an estimate of ϵB from training samples.
First, ignoring the constant positive factor

√
P (ωp)P (ωn),

the bound reduces to

ϵB =
∫ √

p(y|ωp)p(y|ωn)dy ≡
∫

µ1(y)µ2(y)dy (6)

where µ1(y) =
√

p(y|ωp) and µ2(y) =
√

p(y|ωn).
Straightforward expanding of µ1(y) gives

µ1(y) =

{
(2π)

−nc
2

|2ψp(y)|
1
2

exp
(
−1

2
yT

(
2ψp(y)

)−1 y
)}

·
{

(2π)
nc
4 2

nc
2 |ψp(y)|

1
4

}
(7)

The expression in the first curly bracket can be viewed as
a probability density function

P(y) = N (0, 2ψp(y)), (8)

The expression in the second curly bracket, multiplied by
µ2(y), can be written as

Q(y) = (2π)
nc
4 2

nc
2 |ψp(y)|

1
4 · (9)

√√√√
M∑

j=1

P̃ (χj)N (0, ψ̃j(y)).

Therefore, the Bahttacharray bound becomes

ϵB =
∫

P(y)Q(y)dy. (10)

Since P(y) is a probability distribution function, the Bhat-
tacharyya bound can be viewed as an expectation

ϵB = E [Q(y)] , with y ∼ P(y) (11)

To generate samples from P(y), we can simply manipu-
late the training samples of {x̂i|x̂i ∈ ωp, i = 1, . . . , np} by

(WT
√

2x̂) ∼ N (0, 2WT ψpW) = P(y) (12)

Therefore,

ϵB = lim
np→∞

1
np

np∑

i=1

Q(WT
√

2x̂i) (13)

With Eq. 13, we can estimate the Bhattacharyya bound
from training samples. Due to the complexity of the expres-
sion, computing the global optimum W is beyond the scope
of this paper. In this work we consider a simplified problem:
construct a set of discriminative linear transformations and
select the optimum one that maximizes ϵB in Eq. 13.

Heuristically, we use CSP to construct a raw set of dis-
criminative linear transformations. First, we pair the motor
imagery class ωp with each sub-state of the NC class, and per-
form CSP to obtain discriminative linear projection vectors
[11]. The linear projection vectors are collected from each
pair above to form a raw set, from which we enumerate com-
binations of the linear vectors. Denote a combined projection
matrix WK determined by the set of selected vectors’ indices
K. The optimum linear transformation can be obtained at

Wopt = argmin
WK

1
np

np∑

i=1

Q(WT
K
√

2x̂i) (14)

3. EXPERIMENTAL RESULTS

3.1. Experimental Setting

The proposed method is evaluated using the BCI Com-
petition IV dataset 1 [14] (http://ida.first.fhg.de /projects
/bci/competition iv/desc 1.html). Briefly speaking, it con-
sists of motor imagery EEG from 4 human subjects using
a 59-channel EEG device plus 3 artificially generated ones.
Only human EEG data are used here. During data collec-
tion, the subjects were guided by the computer to perform
one of two pre-defined 4-second long motor imagery tasks.
The motor imagery tasks were interleaved with the NC class,
which comprised 2s of blank screen plus 2s of fixation period.
The objective of motor imagery detection is then to predict
from the EEG sequence if, at each time point, the subject is
performing a motor imagery task or staying in NC state.
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We incorporate the proposed method into a filter-band
framework so as to address the variability of responsible
rhythms of motor imagery from one person to another [6].
Briefly, we use a maximum mutual information criterion to
select the most responsive spatio-spectral features. (Readers
interested in the framework are referred to our past work
[16] for details.) Based on these features, class labels (the
motor imagery class as 1 and the NC class as 0) are predicted
by a support vector regression machine from LibSVM tool-
box(SVR) [17]. Besides, we tentatively use the following
method to build the mixture of Gaussian model for the non-
control state EEG. We extract different time intervals relative
to the beginning of a motor imagery task and assign the EEG
samples therein to different sub-states of the NC class. In par-
ticular, the EEG samples in the time period of [-3 -1] seconds
is sub-state 1, while the rest samples constitute sub-state 2.

To evaluate the proposed method, a 5-fold cross-validation
is performed that divides the data into 5 continuous segments.
Each time, 4 segments are used for training the system, while
the rest one is for testing. Two statistics of performance are
investigated: 1. the mean square error (MSE) between the
true class labels and the predicted ones; 2. the Area Under
the ROC curve (AUC). AUC is equal to the probability that
a classifier will rank a randomly chosen positive instance
higher than a randomly chosen negative one [18]. Especially,
here we pay attention to low false positive rates, which are of
particular interest to detecting motor imagery EEG [13].

We also compare the proposed method (referred to multi-
modal hereafter) with the traditional uni-modal approach (re-
ferred to as uni-modal) and the winning algorithm of the com-
petition(referred to as ComptWin). The uni-modal method is
the filter-bank common spatial pattern technique [16], which
uses CSP for linear transformation. Note that the ComptWin
method was developed by the present authors.

3.2. Results

Figure 1 illustrates the comparative MSE result. Evidently,
all the methods yielded significantly lower MSE compared
to the naı̈ve method: a baseline method which constantly pre-
dicted the class label as 0. Compared with both the uni-modal
approach or the competition winner method, the proposed
method (multi-modal) reduced the averaged MSE by 0.02 to
0.03.

The advantage of the proposed method is more prominent
in AUC, if low false positive rate is regarded. As shown in
Table 1, multi-modal yielded a dramatically higher AUC at
0.04, averaged over all subjects, compared with 0.029 by uni-
modal and 0.02 by ComptWin.

4. CONCLUSION

Optimum spatial filtering or linear transformation under zero-
mean multi-dimensional Gaussian mixture conditions is an
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Fig. 1. Comparison in MSE between the proposed method,
uni-modal approach and the competition winner algorithm.

Table 1. Area under the ROC curve (AUC) for low false pos-
itive rate (FPR) range (FPR<0.1). The maximum possible
AUC is 0.1 (if and only if the true positive rate TPR ≡ 1) and
the chance value is 0.005 (if TPR ≡ FPR).

subject MI ComptWin Uni-Modal Multi-Modal
’a’ MI-1 0.0162 0.0102 0.0353

MI-2 0.0267 0.0470 0.0499
’b’ MI-1 0.0176 0.0233 0.0287

MI-2 0.0073 0.0235 0.0255
’c’ MI-1 0.0260 0.0243 0.0460

MI-2 0.0106 0.0240 0.0443
’d’ MI-1 0.0292 0.0380 0.0455

MI-2 0.0370 0.0428 0.0474
Avg Both 0.0213 0.0291 0.0403

intriguing problem, especially in learning optimum linear
transformation for classification of motor imagery EEG.
In contrast to traditional uni-modal Gaussian methods, we
have proposed a novel method that can select optimum lin-
ear transformations under mixture of Gaussian conditions.
Experimental study has clearly indicated that the proposed
method can lead to a significantly better signal detection
results especially in terms of AUC, in comparison with the
state-of-the-art methods.
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