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Abstract 
 

Near-infrared spectroscopy (NIRS) enables non-

invasive recording of cortical hemoglobin oxygenation 

in human subjects through the intact skull using light 

in the near-infrared range to determine. Recently, 

NIRS-based brain-computer interfaces are introduced 

for discriminating left and right-hand motor imagery. 

A neuroimaging study has also revealed event-related 

hemodynamic responses associated with the 

performance of mental arithmetic tasks. This paper 

proposes a novel BCI for detecting changes resulting 

from increases in the magnitude of operands used in a 

mental arithmetic task, using data from single-trial 

NIRS brain signals. We measured hemoglobin 

responses from 20 healthy subjects as they solved 

mental arithmetic problems with three difficulty levels. 

Accuracy in recognizing one difficulty level from 

another is then presented using 5×5-fold cross-
validations on the data collected. The results yielded 

an overall average accuracy of 71.2%, thus 

demonstrating potential in the proposed NIRS-based 

BCI in recognizing difficulty of problems encountered 

by mental arithmetic problem solvers. 

1. Introduction 

Brain-Computer Interface (BCI) is a communication 

system that directly translates brain signals into 

commands for controlling an external device [1]. 

Methods for measuring brain signals include 

electroencephalography (EEG), functional magnetic 

resonance imaging (fMRI), magnetoencephalography 

(MEG), positron emission tomography (PET), and 

more invasive methods such as electrocorticogram 

(ECoG) and implanted electrodes [1]. Recently, the 

feasibility of using near infrared spectroscopy (NIRS) 

in the development of BCIs for left and right-hand 

motor imagery has been demonstrated [2], [3]. 

Although various methods exists, only EEG and NIRS 

are suitable for widespread everyday use since MEG, 

fMRI and PET are technically complex, expensive and 

have limited real-time capabilities [4]. 

NIRS is a non-invasive optical neural imaging 

technique that measures concentration changes of 

oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) in 

the cerebral vessels by means of different absorption 

spectra in the near infrared range [5]. The suitability of 

recognizing left and right motor imagery from 

hemodynamic responses for developing BCI was first 

demonstrated in [6], and later in [2], [3]. However, 

studies have shown that other cognitive tasks, such as 

mental arithmetic, generally cause an increase of HbO2 

associated with decreases of Hb in the prefrontal cortex 

[7]. There are recent seminar papers that investigated 

hemodynamic response using NIRS on mental 

arithmetic tasks [8], [9], and the recognition of mental 

workload from NIRS signals [10], [11]. To the best of 

the authors’ knowledge, there is currently no NIRS-

based BCI designed to recognize the problem size in 

mental arithmetic tasks. The motivation behind the 

investigation is that the amplitude of an event-related 

brain potentials has been shown to be modulated by the 

size of operands in mental arithmetic tasks [12]. 

This paper proposes a novel BCI for recognizing the 

size of operands in a mental arithmetic task from 

single-trial NIRS brain signals, and presents 

preliminary results from a study on 20 healthy subjects. 
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2. Methodology 

This section describes how the NIRS brain signal is 

collected, how the hemodynamic responses are 

computed, and the methodology for recognizing the 

operand size from the hemodynamic responses in the 

proposed NIRS-based BCI. 

2.1. Data collection protocol 

The data was collected from 20 healthy, right-

handed participants (12 male, 8 female; mean age=24.7 

years, range 19–30). All subjects had no neurological 

injury, completed at least 12 years of education, were 

fully informed, and consented to participate in the 

study. The subjects were seated in a comfortable chair 

in a room with normal lighting and were asked to relax 

before the experiment commenced. They were also 

asked to minimize movement and to respond as quickly 

and correctly as possible during data collection. The 

recording session for each subject was less than 30 

mins. 

During data collection, the subjects underwent a 

total of 75 trials of arithmetical tasks that were evenly 

distributed into 3 difficulty levels: easy, medium, and 

hard. The subjects performed two single-digit additions 

(e.g. 5 + 4) for the easy tasks, single-digit and double-

digits additions (e.g. 5 + 34) for the medium tasks, and 

two double-digits additions (e.g. 53 + 34) for the hard 

tasks. Arithmetical tasks that involved the carry-over 

operation are one of the contributing factors of problem 

size effect. Hence these tasks were excluded. 5 trials of 

the same difficulty level formed a block and a total of 

15 randomized blocks were presented to the subjects. 

The duration of each trial was 12 s. At the start of each 

trial, the arithmetic task was presented at the center of a 

display screen and remained for a maximum of 9 s or 

until the subject responded. After the subject 

responded, a fixation cross appeared for the remainder 

of the 12 s duration. After completing 1 block, a 

fixation cross would appear for 30 s before the next 

block began. 

The data were collected using 16-channel 

continuous-wave near infrared spectroscopy (see Fig. 

1) device to compute hemodynamic changes in the 

prefrontal cortex while performing the mental 

arithmetic tasks. The probes comprised 4 tri-

wavelength (730nm 805nm, and 850nm) LEDs and 10 

detectors held onto the subject’s forehead using a 

Velcro band. The 730nm wavelength was used to 

detect deoxy Hb, 850nm to detect oxy Hb, and 805nm 

to detect the dark current or fixed-pattern noise. A total 

of 16 channels was collected for each wavelength using 

a sampling frequency of 3 Hz. This yielded a total of 

32 channels of concentration changes in 

deoxyhemoglobin (HB) and oxyhemoglobin (HBO2). 
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Fig. 1 Multichannel near infrared optodes arrangement on the 

prefrontal cortex for the study. A pair of LED and probe yields 1 

channel of HB and 1 channel of HBO2 signal. A total of 16 channels 

of HB and 16 channels of HBO2 signals are thus collected. 

2.2. Preprocessing 

Let the optical density for wavelength λ acquired 
from a set of source and detector labeled as channel c 

be denoted as ODc

λ . First, the optical densities for 

wavelength λ1=730nm and λ2=850nm are subtracted 
from wavelength 805nm to remove the fixed-pattern 

noise. Next, the relative change in optical density is 

computed by dividing each time sample by the mean of 

the optical signal acquired for the session [2] given by 

 ( ) ( ) ( )
1

1
OD OD OD

T

c c c
t t

T

λ λ λ

τ

τ
=

∆ = ∑ , (1) 

where ODc

λ
∆  is the normalized change in optical 

density, and T is the total number of time samples 

acquired for the session. 

ODc

λ
∆  is then low-pass filtered using Chebychev 

type II filter with a cut-off frequency of 0.14 Hz and 

pass-band attenuation of 0.02 dB. Next, linear-

detrending is perfomed to remove the drift (low 

frequency bias) in the NIRS measurements due to 

various reasons, such as subject movement, blood 

pressure variation, and instrumental instability [13]. 

After filtering and detrending, unity is added to bring 

the mean of the optical density to unity instead of zero. 

The change in optical density ODc

λ∆  is then computed 

as the negative logarithm from the resultant given by 

 �( )OD log ODcc

λλ∆ = − ∆ , (2) 

where �ODc

λ
∆  denotes the filtered, linearly-detrended 

optical density with unity added. 

2.3. Computing hemodynamic responses 

In NIRS studies, optical density changes ∆ODc can 

be expressed as a linear combination of the changes in 

oxyhemoglobin ∆[HbO2]c and deoxyhemoglobin 

∆[Hb]c. This equation, referred to as the modified 
Beer-Lambert law (MBLL) [5], [14], is given by 

 [ ] [ ]( )
2Hb HbO 2OD DPF Hb + HbOc c c

L
λ λ λ λ λε ε∆ = ∆ ∆ , (3) 
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where ελ is the wavelength-dependent extinction 

coefficient, L
λ
 is the path length from source to 

detector, and DPF
λ
 is the differential path-length. 

Typically, dual wavelength measurements of optical 

absorption are often converted to changes in HbO2 and 

HB by solving the series of linear equations [2] 
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2.4. Feature extraction 

Feature extraction is performed by taking the 

average ∆[HB]c and ∆[HBO2]c across 12s of NIRS data 

recorded for a single trial. Since there are 16 channels, 

this resulted in a total of 32 features for a single trial.  

The above feature extraction is compared with the 

method in [11] that employed features using averaged 

∆HB and ∆HBO2 from the left and right side of the 

prefrontal cortex. This method is implemented by 

averaging ∆HB and ∆HBO2 from channels c = 1, 2, 3 

and 4 for the left and channels c = 13, 14, 15 and 16 for 

the right in this work. This resulted in four time series 

features ∆[HB]left, ∆[HBO2]left, ∆[HB]right ∆[HBO2]right 
for each trial. Taking the average across 12s of NIRS 

data resulted in a total of 4 features for a single trial. 

The feature vector for a trial i
th
 trial is formed using  

 [ ] [ ]2HbO Hbi  = ∆ ∆ x , (6) 

where xi∈ℝ
1×nt

, i=1,2,…,nt; nt denotes the total number 

of trials in the training data. 

The feature matrix from training data is then  

 [ ]1 2 nt

T
=X x x x⋯ . (7) 

2.5. Feature selection and classification 

Feature selection is then performed to select 

discriminative features using the Mutual Information-

based Best Individual Feature (MIBIF) algorithm [15] 

on the training data. The MIBIF algorithm first 

computes the mutual information of each feature with 

the class labels. The mutual information between the 

features F ={f1, f2,…, fnf} whereby fj comprises the j
th
 

column of X, and the class C can be represented as [16] 

 ( ) ( ) ( ); |I H H= −F C C C F  (8) 

The mutual information of each feature I(fj, C) can 

be computed by estimating the entropy and the 

conditional entropy using Parzen Window [16], [17]. 

The features are then sorted in descending mutual 

information and the first k features are then selected. 

Next, the Naïve Bayesian Parzen Window (NBPW) 

classifier [15] is used to classify the selected features. 

The NBPW classifier estimates conditional probability 

p(x|ω) using Parzen Window and prior probability P(ω) 
from training data samples, then predicts the class ω 
with the highest posterior probability p(ω|x) given a 
test sample x using Bayes rule and the naïve 

assumption that all the features are conditionally 

independent.  

3. Experimental Results 

The performance of the proposed NIRS-based BCI 

using the feature extraction techniques described in 

section 2.4 are evaluated using 5×5-fold cross-

validations on the single-trial NIRS data collected. 

Feature selection and training of the classifier are 

performed on the training data, and classification 

performance is then evaluated on the test data in each 

fold. The performance is evaluated on two of three 

difficulty levels and the results are presented in 

TABLE I. The averaged performance of each feature 

extraction technique is presented in the last row. 
 

TABLE I 

Results for Easy versus Hard (EvH), Easy versus Medium (EvM), 

Medium versus Hard (MvH); using Averaged Left and Right HB, 

HBO2 channels (AvgLRch), using MIBIF to select 2 of AvgLRch 

(Best2AvgLRch), using MIBIF to select 4 out of 32 channels of HB, 

HBO2 (Best4ch); and using MIBIF to select 5 channels (Best5ch) 

 AvgLRch  Best2AvgLRch  Best4ch  Best5ch 

Sub EvH EvM MvH  EvH EvM MvH  EvH EvM MvH  EvH EvM MvH 

1 74.0 70.0 72.8  67.6 56.8 70.0  70.0 69.6 73.6  72.0 68.8 75.6 

2 76.0 86.0 68.0  77.2 86.0 65.2  76.8 84.8 79.6  76.4 86.8 80.0 

3 52.8 63.2 70.4  51.6 64.4 66.0  67.6 66.4 70.4  70.8 69.2 72.8 

4 73.2 74.4 63.2  70.4 69.2 52.0  68.0 76.8 67.6  68.8 74.8 70.8 

5 72.8 73.2 70.4  67.2 74.8 59.2  68.8 76.4 72.0  67.2 74.8 73.2 

6 65.2 74.0 67.6  64.4 75.6 59.6  69.2 73.6 70.8  69.2 73.2 71.2 

7 56.8 57.6 50.4  48.4 53.2 48.0  53.6 64.0 55.6  54.0 63.2 60.0 

8 62.4 70.4 66.8  60.8 61.6 67.6  67.6 64.4 63.2  64.8 71.2 64.4 

9 72.4 70.4 65.2  70.0 66.4 61.6  81.6 78.4 78.4  79.6 79.2 76.4 

10 72.4 59.6 63.2  73.2 60.4 55.6  70.4 72.0 73.2  71.6 72.8 72.4 

11 60.0 56.0 69.6  53.6 54.0 64.8  61.6 68.0 78.8  62.8 71.2 78.4 

12 66.4 64.8 71.6  70.0 63.2 69.6  66.0 62.0 70.4  67.2 64.4 70.8 

13 50.4 54.4 56.4  54.4 50.0 46.0  66.0 60.8 61.2  66.8 64.8 62.8 

14 60.4 53.6 53.6  53.6 50.4 52.0  62.8 68.0 67.2  61.2 70.4 66.8 

15 52.0 63.2 61.6  50.4 66.8 65.2  71.6 65.2 67.6  70.8 62.8 68.4 

16 65.2 57.2 72.0  68.8 53.2 72.4  69.6 72.4 72.0  71.2 72.4 74.8 

17 65.6 62.4 60.0  64.8 62.0 58.0  65.6 77.6 56.4  66.8 74.4 55.2 

18 65.6 74.8 62.0  56.8 79.6 63.6  74.8 82.4 70.4  81.2 82.4 68.4 

19 49.2 60.0 53.6  44.0 60.4 45.6  64.8 68.4 68.4  60.0 70.0 70.0 

20 70.8 71.2 62.8  73.2 75.2 60.8  91.6 92.4 84.0  92.8 91.6 84.4 

Avg 64.2 65.8 64.1  62.0 64.2 60.1  69.4 72.2 70.0  69.8 72.9 70.8 

  64.7    62.1    70.5    71.2  
 

Statistical analysis using 1-way ANOVA on the 
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results of the proposed NIRS-based BCI using different 

feature extraction techniques in TABLE I revealed 

significant differences (p=1.87×10-10). Selecting 2 
features extracted by averaging ∆HB and ∆HBO2 from 

left and right channels using the MIBIF algorithm 

yielded significantly poorer results from t-test 

compared to all features (µ=64.7% from AvgLRch 
versus 62.1% from Best2AvgLRch, p=1.84×10-5). In 
contrast, selecting 4 features extracted by averaging 

∆HB and ∆HBO2 across each individual channels 

yielded significantly better results than averaging ∆HB 
and ∆HBO2 from left and right channels (mean 70.5% 

from Best4ch, p=2.66×10-9). Increasing the features 
selected to 5 significantly improved the results further 

(µ=71.2% from Best5ch, p=0.03), but further increase 
to 6 did not yield significantly improved results 

(µ=71.55%, p=0.16, Best6ch omitted from TABLE I). 

4. Conclusions 

This paper presents a novel BCI for detecting the 

problem size effect in a mental arithmetic task from 

single-trial NIRS brain signals. A study is performed 

on 20 healthy subjects to measure changes in the 

concentration of oxyhemoglobin (∆HBO2) and 

deoxyhemoglobin (∆HB) responses in performing three 
difficulty levels of mental arithmetic. The performance 

of the proposed NIRS-based BCI is evaluated using 

5×5-fold cross-validations on the single-trial NIRS data 
collected using various features extraction methods. 

The results showed that performing feature selections 

on ∆HB and ∆HBO2 from all the channels yielded an 

averaged accuracy of 71.2%, which is significantly 

better than using features by averaging ∆HB and 
∆HBO2 from the left and right side of the prefrontal 

cortex. The results demonstrated the potential of the 

proposed NIRS-based BCI for recognizing the problem 

size effect in mental arithmetic task. More advanced 

feature selection and classification methods could be 

employed to further improve the classification 

performance. 
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