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Abstract— The performance of a Brain-Computer Interface
(BCI) depends on reliable feature extraction and accurate clas-
sification. Motor imagery has been successfully used in BCI for
communication and control. During motor imagery, for EEG
based BCI, it was known that the discriminative frequency bands
are subject-specific. Moreover, such discriminative frequency
bands for each subject might vary from time to time. In this
paper, we investigate the variability of discriminative spectral
ranges and its impact on classification accuracy. It is found that
for each subject, his discriminative frequency bands changes
significantly from session to session, but keeps almost stable
within a session. We then propose a method to adaptively update
the discriminative frequency bands using Time-Frequency fisher
ratio. From the experimental analysis, it is found that we can
reduce the average error rate by 11.50% compared to the
case where fixed discriminative frequency bands obtained from
calibration session are used.

I. I NTRODUCTION

The ultimate goal of Brain-Computer Interface (BCI) tech-
nology is to provide an alternative communication and control
channel for people with severe motor disabilities. The use of
motor imagery (MI) patterns in Electroencephalogram (EEG)
in BCIs is a feasible method to translate the user’s intent to the
commands to control artificial devices. The performance and
reliability of all BCI applications rely mostly on the accuracy
of classification. Therefore extraction and representation of
MI related EEG features play a vital role in the BCI system
[1]. It has been observed that the MI evokes neural activation
in brain, especially on primary motor cortex. MI tasks are
associated with short lasting Event related De/synchronization
(ERD\ERS) patterns [2]. Also the precise timing and frequency
of ERD/ERS vary among subjects. The non-stationary nature
of the ERD\ERS patterns causes high inter-subject and intra-
subject variability in MI based BCIs. The Common Spatial
Pattern (CSP) algorithm is an effective tool for detecting
these ERD\ERS effects and to calculate subject-specific dis-
criminative spatial filters [3]. Traditionally, manual tuning or
setting a broad band filter are employed for frequency band
selection in CSP-based works. Extensions of CSP algorithms
such as Common Sparse Spectral Spatial Pattern (CSSSP),
Common Spatio-Spectral Pattern (CSSP), Filter bank CSP
(FBCSP), Adaptive FBCSP and Discriminative Filter bank
CSP are available in literature in order to choose the optimal
frequency band automatically [4-7]. In [6], we have proposed a
subject-specific discriminative frequency band selection using

the Time-Frequency (T-F) fisher ratio during right hand and
foot MI tasks. After estimating the discriminative bands from
the calibration data, required bandpass filters are designed and
CSP features are extracted from the filtered EEG signal during
testing. In both [6] and [7], the frequency bands estimated
from the calibration data itself are used for the test data also.
But the frequency bands containing discriminative information
may vary with time. Therefore, in this paper, we investigate
the variability of discriminative spectral changes and its impact
classification accuracy of MI tasks. The proposed method
in the current work keeps track of the frequency domain
variations in EEG signal. Also its classification accuracy
is compared with BCI system where fixed discriminative
frequency bands obtained from calibration are used. The
analysis is done using publicly available BCI competition IV
dataset IIb, which were collected from a two-class MI BCI
task for 9 subjects who performed right hand and left hand
MI. The data for each subject comprises 5 sessions, with
EEG measurements from 3 electrodes C3, Cz and C4, and
sampled at 250Hz. The paper is organized as follows: Section
II presents the methodology used; the inter-session spectral
variability is explained in section III; Section IV discusses the
results obtained and Section V has our conclusions.

II. M ETHODOLOGY USED
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Fig. 1. Discriminative Spectral features based BCI system during Calibration.

The filter bank based BCI system, with subject-specific
discriminative features, has four stages [6]. These stages are
frequency band selection, multi-band filtering, calculation of
features using CSP algorithm and feature classification. After
selecting the informative frequency components using T-F



Fisher ratio plot, we employ the desired bandpass filters
realization using a coefficient-decimation based reconfigurable
filter bank [8]. Each bandpass filter of EEG is followed by a
number of spatial filters to yield CSP features that are specific
to each frequency range of that band pass filter. Among the 5
sessions available in the discussed dataset, session-1 of each
subject is used as the training data to develop the training
model and the model is applied on the other 4 sessions.
Thus, session-1 acts as calibration session and other 4 sessions
as test sessions. The training model parameters include the
discriminative frequency bands from calibration session, CSP
projection matrix for spatial filtering and Classifier model. The
framework shown in Fig. 1 is used during training.

A. Frequency Band Estimation

EEG signals recorded by electrodes on sensorimotor cor-
tices give the highest discrimination between MI tasks [2].
For the subject-specific frequency band selection from the
training data, we adopt the same method proposed by us
in [6]. The BCI competition IV dataset IIb analyzed here is
having the right hand and left hand MI tasks. Therefore EEG
channel C4 alone is sufficient to estimate the discriminative
frequency bands [7]. In order to find out the predominant
frequency bands, fisher ratios are calculated across T-F do-
main from channel C4. Fisher ratio is known as a measure
of discriminabilty between two classes of MI tasks. Given
a single trial EEG, the power spectral density in shifting
time windows using Short-Time Fourier Transform (STFT)
is calculated. Thus each trial is associated with a discrete T-
F density mapI( f , t). Then fisher ratioFR is calculated to
measure the discriminative power of each time frequency point
across trials and classes.

FR( f , t) =
SB

SW
(1)

SW = ∑C
k=1∑nK

n=1(In −mk)
2 andSB = ∑C

k=1 nk(m−mk)
2 are the

within-class variance and between-class variance respectively,
mk is the average for classk, (k = 1,2),m is the average over
k classes andnk denotes the number of trials for classk. Then
the dominant frequency bands are automatically located by a
band selection algorithm depending on the fisher ratio plot [6].
Fig. 2 shows the T-F fisher ratio plot of Subject-1 in session-3.
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Fig. 2. The T-F fisher ratio plot in session-3 of subject-1. Frequency bands
19-23 Hz and 11-14 Hz are selected by the algorithm for further processing.

B. Band pass Filtering

After estimating the subject-specific discriminative fre-
quency bands from T-F fisher ratio plots, as described in
the section A, the desired bandpass filters are realized. For
this, reconfigurable Finite Impulse Response (FIR) filters are
designed based on the coefficient-decimation (CD) approach
proposed in [8]. It is a computationally efficient approach
to realize FIR filters that have flexible frequency responses.
The basic philosophy of CD is as follows. If the coefficients
of an FIR filter (termed modal filter) are decimated byM,
i.e., if every Mth coefficient of the filter is kept unchanged
and remaining coefficients are changed to zeros, a multi-
band frequency response will be obtained. If these multi-band
frequency responses are selectively masked using inherently
low complex wide transition-band masking filters, different
low pass, high pass, band pass, and band stop filters can
be obtained. This technique has absolute control over the
locations of center frequencies and passband widths. Therefore
depending on the frequency information from T-F plot, desired
bandpass filters in the BCI system can be designed from
the same set of modal filter coefficients. More details of CD
technique can be found in [6, 8]. Thus the required bandpass
filters are designed using the CD technique to perform multi-
band filtering. From the experiments, it is found that only
2 bands are sufficient for good classification performance.
Increasing the number of bands did not improve the system
performance in the discussed dataset.

C. CSP based Feature Extraction and Classification

The goal of the CSP algorithm is to design spatial filters
that give a new time series whose variances are optimal for
the discrimination of two-classes of EEG measurements. CSP
algorithm is based on the simultaneous diagonalization of two
covariance matrices. For a single trial EEGE, the spatially
filtered signalZ is given as

Z =WE (2)

where is anN ×T matrix representing the raw EEG measure-
ment data of a single trial;N is the number of channels;T is
the number of measurement samples per channel andW is the
CSP projection matrix. The first and lastm rows of Z, i.e. Z p,
p ∈ 1, ...,2m form the feature vectorFp given in (6) as inputs
to a classifier [5].

Fp = log

[
(var(Zp))/

(
2m

∑
i=1

var(Zi)

)]
(3)

In this work, the CSP features are extracted from two discrim-
inative filter outputs and therefore each trial is accompanied
with 4 features corresponding tom = 1 in the CSP algorithm.
Then features are classified using Naïve Bayesian Classifier
[5].

III. I NTERSESSIONVARIABILITY OF FREQUENCY BANDS

Due to the non-stationary nature of ERD\ERS patterns,
the subject-specific discriminative bands may vary with time.



Therefore the discriminative bands selected from calibration
session may not be useful for processing other sessions. In
order to investigate the variability of discriminative frequency
bands during MI, the discriminative bands for various sessions
are analyzed separately. In the analysis, it is found that the dis-
criminative frequency information vary between sessions for
the same subject. We did 10-fold Cross-Validation separately
for the 5 sessions in all subjects and noted the most voted 2
frequency bands among all folds in each session. Again the
10-fold Cross-Validation procedure is repeated processing all
folds in these 2 selected frequency bands in the respective
sessions for all subjects. Features from these two selected
discriminative bands gave comparatively higher classification
accuracies in most of the sessions in all subjects. Figures 3(a)-
3(c) shows the selected discriminative bands in 5 sessions for
Subjects 1, 2 and 3. Fig. 3 shows the significant inter-session
variation of discriminative frequency bands. But the degree of
discriminative band variation is found to be subject-specific.
It is also noted that the variation in same session does not
appear as strong as between session variation of frequency
bands, i.e. the inter-session variability seems more prominent
than intra-session variability.
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(a) Subject-1
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(c) Subject-3

Fig. 3. Variation of discriminative frequency bands in 5 sessions.

From the above analysis, it is observed that that there exists
a high inter-session variability of discriminative frequency
bands in all the subjects analyzed. Therefore processing of
new EEG samples in the frequency bands obtained during the
training from session-1, might not correctly classify the tasks.
The impact of this spectral variability in classification accura-

cies of MI tasks is investigated in this work. To accommodate
this variability, the BCI system should keep track of variations
in frequency domain. As the discriminative frequency bands
vary from session to session for all subjects, a new session
should incorporate its discriminative bands for improving its
classification performance.

For analysis, we present the classification results of the
BCI system using static and updated discriminative frequency
bands. In Static Spectral Feature (SSF) method, the discrimina-
tive frequency bands estimated from calibration session itself
is used for test session also, i.e. the spectral variability is not
updated in the system when new EEG samples are received as
shown in Fig. 4(a). But in Updated Spectral Feature method
(USF) given in Fig. 4(b), the system keeps track of variations
in discriminative spectral information. After a few trials of
MI tasks in the new session, the discriminative bands are
updated. The first set of test EEG data is processed in the
calibration model frequency bands. Then after everyN 1 trials
in the test session EEG, discriminative frequency bands are
updated using the T-F fisher ratio plot of thatN1 EEG samples.
Thus the most recent discriminative frequency information is
utilized for the following signals. The buffer shown in Fig. 4(b)
is used to keep the EEG signals for frequency band updating.
A buffer of 40 trials(N1 = 40) found to be good enough to
obtain discriminative the T-F plot and update the frequency
bands.

Calibration Session 

Frequency bands
Spatial Filter (W) Classifier Model

Test EEG Output

(a) Employing Static Spectral Features (SSF).

Band-pass filtering
Spatial Filtering 

using W

Buffer

Classifier model

T-F fisher ratio 

plot

Update frequency 

bands

Test EEG Output

(b) Employing Updated Spectral Features (USF).

Fig. 4. Test framework.

In SSF method, the same training model parameters are used
for all sessions and USF method uses the updated frequency
bands in test sessions. But train classifier model and CSP
projection matrix are kept fixed during testing also, assuming
that the discriminative features fall in the same feature space
and weights of different channels (CSP projection matrixW )
are constant. It means no updating of classifier model or spatial
filter W is done in both SSF and USF methods during testing.
Only frequency bands and filters are updated in USF method.

IV. RESULTS AND DISCUSSIONS

We test our methods on BCI Competition IV dataset IIb. It
consists of EEG data from 9 subjects recorded in 5 sessions.
Estimated features after band pass filtering are classified by
a Naïve Bayesian Classifier [5]. We present the results using
both SSF and USF methods. Figures 5(a) and 5(b) show the



 

40

50

60

70

80

90

100

SSF USF

(a) In session-4

 

40

50

60

70

80

90

100

SSF USF

(b) In session-5

 

60

62

64

66

68

70

72

74

76

78

Session 2 Session 3 Session 4 Session 5 Average

SSF

USF

(c) In sessions 2, 3 4 and 5

Fig. 5. Comparison of classification accuracies using Static and Updated
Spectral features.

classification accuracies in sessions 4 and 5 respectively for the
9 subjects(S1 to S9) in dataset. USF method performs better
than SSF in most of the subjects. On average, USF method
outperforms SSF as shown in Fig. 5(c), by error rate reductions
of 1.01%, 6.21%, 29.90% and 8.84% in sessions 2, 3, 4 and
5 respectively.

For both SSF and USF methods, three calibration model
parameters are developed including the discriminative bands,
CSP projection Matrix (W or spatial filter) and classifier
model during calibration done on session-1. By applying same
classifier hyper plane and CSP matrix throughout the testing
sessions, we assume that the feature space and spatial filters
respectively are similar always. But frequency bands need
to be updated in USF. In CSP based feature extraction, the
variances of CSP projected EEG signals (spatially filtered
EEG signals) constitute the features. In the USF, the features
are extracted from the discriminative frequency bands which
posses relatively higher fisher ratio values. The fisher ratio is
to maximize the inter-class variance and minimize the within-
class variance. Since the energy in selected bands gives good

discrimination, the application of the same CSP projection
matrix might give almost similar results. So we assume that

the discriminative bands can be informative even though the
spatial filter and classifier hyper plane are not updated.

The proposed Updated Spectral Features method updates the
discriminative frequency bands from the new EEG samples
and keeps track of informative frequency bands. Thus the
most recent information is used for further processing of EEG
signals. From the accuracy results, it is observed that the
classification accuracies improve in most of the subjects by up-
dating the discriminative frequency components. More effec-
tive performance can be achieved by better online adaptation
techniques [9]. However the results show that discriminative
bands play a significant role even though weights of channels
and classifier model are kept fixed all throughout the analysis.

V. CONCLUSION

The discriminative frequency band variations between var-
ious sessions for EEG signal recorded during motor imagery
tasks and its impact in classification accuracy are investigated
using the proposed filter bank based BCI system. The proposed
algorithm effectively determines subject-specific discrimina-
tive frequency bands using Time-Frequency fisher ratio values.
Also the system keeps track of frequency domain variations
in the discriminative features. The processing of test sessions
using the classifier model and spatial filter developed from
calibration session give promising results, even though the fre-
quency bands and filtering are updated. It gives a new direction
for further research. Also online adaptation techniques will be
exploited in the future to further improve the performance.
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