
 
 

 

 

  

Abstract— The design of multiclass BCI is a very challenging 

task because of the need to extract complex spatial and temporal 

patterns from noisy multidimensional time series generated 

from EEG measurements. This paper proposes a Multiclass 

Common Spatial Pattern (MCSP) based on Joint Approximate 

Diagonalization (JAD)  for multiclass BCIs. The proposed 

method based on fast Frobenius diagonalization (FFDIAG) is 

compared with another method based on Jacobi angles on the 

BCI competition IV dataset 2a. The classification accuracies 

obtained from 10×10-fold cross-validations on the training 

dataset are compared using K-Nearest Neighbor, Classification 

Trees and Support Vector Machine classifiers. The proposed 

MCSP based on FFDIAG yields an averaged accuracy of 53.6% 

compared to 32.8% given by the method based on Jacobi angles 

and 27.8% of the one versus rest CSP methods.  

I. INTRODUCTION 
rain–Computer Interfaces (BCIs) translate brain signals 
into a control signal without using muscles or peripheral 
nerves.  They provide a direct communication channel 

between brain and computer or external devices. A review of 
current BCI systems is found in [1]. A typical BCI system is 
composed of a set of sensors and signal processing 
components (displays and sensory stimulators) that translate a 
person’s brain activity directly into useful control or 
communication signals.   
 Typical noninvasive electroencephalogram (EEG) based 
brain-computer communication devices are composed of 
three subsystems, namely, EEG acquisit ion, EEG signal 
processing and the output subsystems. The acquired EEG 
signals can be regarded as complex time series signals that 
have multiple factors intricately intertwined. Therefore, 
signal processing and classification methods are essential 
tools in the development of improved BCI technology. One of 
the main problems in this context is the low signal to noise 
ratio (SNR) of the recorded EEG data. This has motivated 
research on spatial filters that are designed to extract those 
components of the EEG/MEG data that provide most 
information on the intention of the BCI user. One algorithm 
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that is very frequently used for this purpose is the common 
spatial patterns (CSP) algorithm. CSP is a technique to 
analyze multichannel data based on recordings from two 
classes (conditions). CSP was first proposed in the context of 
EEG/MEG analysis in [2], and introduced to the BCI 
community in [3].  
 The CSP algorithm is capable of computing spatial filters 
that maximize the ratio of the variance of the data conditioned 
on one class to the variance of the data conditioned on the 
other class, when the EEG/MEG data of two different classes 
are provided. The CSP algorithm computes optimal features 
for binary classification [15]. A fundamental limitation of 
CSP is that it can only handle two classes. There is no 
canonical method for computing the relevant CSP patterns for 
multiclass classification [16]. This is because simultaneous 
diagonalization, upon which CSP is based, can be carried out 
only for two matrices.  
 Several approaches have been proposed to extend the CSP 
algorithm to multiclass paradigm [15],[16]. One approach of 
extending CSP to multiclass paradigms is by performing 
two-class CSP on different combinations of classes (e.g., by 
computing CSPs for all combinations of classes or by 
computing CSP for one class versus all the other classes).  
 An extension of CSP for multiclass case has been proposed 
in [18] where the M-class problem is decomposed into a set of 
M binary problems. Spatial patterns for each class against all 
others are calculated in this approach. Classification is then 
performed on the variances of the projections of the EEG 
signals on all these CSP patterns [18]. However, the 
performance of one versus rest CSP in general is still limited 
[17,18].  
 Another approach for extending CSP for multiple classes is 
to approximate the joint diagonalization. JAD makes use of 
approximate optimization methods to diagonalize more than 
two matrices simultaneously. Given EEG data from M 
different classes, the goal of CSP by JAD is to find a 
transformation 𝑊𝑊 ∈ 𝑅𝑅𝑁𝑁×𝑁𝑁  that diagonalizes the covariance 
matrices. 
 CSP by joint approximate diagonalization had been shown 
to be equivalent to independent component analysis (ICA) in 
[17] and a method to choose those independent components 
(ICs) that approximately maximize mutual information of ICs 
and class labels has also been proposed in [17]. A linear Least 
Squares algorithm for joint diagonalization had been 
attempted in [16]. 
 The two implementations of multiclass CSP discussed in 
this paper are based on two approximate joint diagonalization 
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methods:  fast Frobenius algorithm and Jacobi angles for joint 
diagonalization.  
 The paper is organized as follows: Section II provides brief 
descriptions of the CSP algorithm and the JAD methods.   In 
Section III the methodologies synthesizing MCSP and 
classifiers are described. The Data and experimental 
paradigm are presented in Section IV, and followed by 
comparative results in Section V. In Section VI the 
conclusions are drawn up with a brief discussion on the 
results.  

II. COMMON SPATIAL PATTERNS  
 The ultimate success of a learning machine relies typically 
on the proper preprocessing of the data. In practice, we can 
discard non-informative dimensions of the data and thus 
select the features of interest for classification [3].   
 The CSP algorithm had proven to be highly successful in 
computing spatial filters for EEG data. The CSP algorithm 
had first been presented by Koles [2] as a method to extract 
the abnormal components from EEG, using a set of patterns 
that are common to both the normal and the abnormal 
recordings and have a maximally different proportion of the 
combined variances. Later CSP was used to extract features 
for classification from EEG signals [3]. The first and last few 
CSP components (the spatial filters that maximize the 
difference in variance) are used to classify the trials with high 
accuracy.  
 Let the random variable �⃗�𝑥  ∈ 𝑅𝑅𝑁𝑁  represent the EEG data, 
recorded through N electrodes, from which the intention of 
the BCI user 𝑐𝑐 ∈ 𝐶𝐶 = {𝑐𝑐1, … , 𝑐𝑐𝑀𝑀} is to be inferred. Denote the 
class probability by 𝑃𝑃(𝑐𝑐𝑖𝑖), 𝑖𝑖 = 1, … ,𝑀𝑀 and assume that the 
EEG data conditioned on any class follows a Gaussian 
distribution with zero mean, i.e.  
𝑃𝑃(�⃗�𝑥|𝐶𝐶𝑖𝑖) = 𝑁𝑁�0,𝑅𝑅𝑋𝑋|𝐶𝐶𝑖𝑖�, 𝑖𝑖 = 1, … ,𝑀𝑀.  
Then a linear transformation 𝑤𝑤 ∈ 𝑅𝑅𝑁𝑁×𝐿𝐿 can be found  where 
𝐿𝐿 ≪ 𝑁𝑁, such that for finite training data using the reduced 
dimension 𝑥𝑥� = 𝑊𝑊𝑇𝑇𝑥𝑥. This reduced dimension would lead to 
an increased classification accuracy in comparison to using �⃗�𝑥. 
 

A. Two-Class CSP 
 Consider a two-class paradigm, i.e., C = {c1, c2}. The CSP 
algorithm then solves the optimization problem  

𝑤𝑤��⃗ ∗ = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥
𝑤𝑤��⃗ ∈ 𝑅𝑅𝑁𝑁 �𝑤𝑤��⃗

𝑇𝑇𝑅𝑅𝑥𝑥/𝑐𝑐1𝑤𝑤��⃗
𝑤𝑤��⃗ 𝑇𝑇𝑅𝑅𝑥𝑥/𝑐𝑐2𝑤𝑤��⃗

�,               (1) 

 
 where Rx/c1 and Rx/c1 are covariance matrices of  x�⃗  with 
given c1 and c2.  Solutions to (1), which is in the form of 
Rayleigh quotient,can be found by solving the generalized 
eigenvalue problem,  

Rx/c1w���⃗ =  λRx/c2w���⃗  .     (2) 
The eigenvectors of (2) thus correspond to the desired spatial 
filters. The corresponding eigenvalue determines the value of 
the cost function 

𝜆𝜆∗ = �𝑤𝑤��⃗
∗𝑇𝑇𝑅𝑅𝑥𝑥/𝑐𝑐1𝑤𝑤��⃗ ∗ 

𝑤𝑤��⃗ ∗𝑇𝑇𝑅𝑅𝑥𝑥/𝑐𝑐2𝑤𝑤��⃗ ∗
�. 

 The eigenvalues are the measure of the quality of the 
obtained spatial filters, i.e., the eigenvalue associated with a 
spatial filter expresses the ratio of the variance between 
conditions of the component of the EEG data extracted by the 
spatial filter. Preprocessing is then done by combining the L 
eigenvectors of (2) with the smallest/largest eigenvalues to 
form 𝑊𝑊 ∈ 𝑅𝑅𝑁𝑁×𝐿𝐿 and computing  𝑥𝑥� = 𝑊𝑊𝑇𝑇𝑥𝑥 , where x denotes 
the original EEG signal and 𝑥𝑥�  is the signal with reduced 
dimensions. 
   

B. Fast Frobenius Algorithm for Joint Diagonalization  
 The fast algorithm for joint diagonalization (FFDIAG) is 
based on the Frobenius norm formulation. Frobenius norm 
formulation had been used in various joint diagonalization 
approaches [7-9].Define, 

𝐹𝐹𝑘𝑘 = 𝑉𝑉𝐶𝐶𝑘𝑘𝑉𝑉𝑇𝑇 ,         (3)  
which denotes the result of applying transformation V to 
matrix Ck. Joint diagonalization can be defined as the 
following optimization problem:   

𝑎𝑎𝑖𝑖𝑚𝑚
𝑉𝑉 ∈ 𝑅𝑅𝑁𝑁𝑋𝑋𝑁𝑁 �𝑀𝑀𝐷𝐷(𝐹𝐹𝑘𝑘)

𝐾𝐾

𝑘𝑘=1
, 

where the diagonality measure MD is the Frobenius norm of 
the off-diagonal elements in Fk: 

 𝑀𝑀𝐷𝐷 �𝐹𝐹𝑘𝑘 � = 𝑜𝑜𝑜𝑜𝑜𝑜(𝐹𝐹𝑘𝑘 ) = ∑ (𝐹𝐹𝑖𝑖𝑖𝑖𝑘𝑘)2.𝑖𝑖≠𝑖𝑖       (4) 
 The FFDIAG proposed by [5] is an iterative scheme to 
approximate the solution of the following optimization 
problem: 

𝑎𝑎𝑖𝑖𝑚𝑚
𝑉𝑉𝑉𝑉𝑅𝑅𝑁𝑁𝑋𝑋𝑁𝑁 ∑ ∑ ((𝑉𝑉𝐶𝐶𝑘𝑘𝑉𝑉𝑇𝑇)𝑖𝑖𝑖𝑖 )2𝑖𝑖≠𝑖𝑖𝐾𝐾

𝑘𝑘=1 .      (5) 
The invertibility of the matrix V is used as a constraint 
preventing convergence of the cost function to the trivial 
solution of V=0. Invertibility can be enforced by carrying out 
the update of V in multiplicative form as  
𝑉𝑉(𝑚𝑚+1) ← �𝐼𝐼 + 𝑊𝑊(𝑚𝑚)�𝑉𝑉(𝑚𝑚), 
where I denotes the identity matrix. The update matrix W(n) is 
constrained to have zeros on the main diagonal, and n is the 
iteration number.  In order to maintain invertibility of V it is 
sufficient to enforce invertibility of I+W(n).  
 According to the Levi-Desplanques Theorem, if an n×n 
matrix A is strictly diagonally-dominant, then it is invertible 
[5]. An n×n matrix A is said to be strictly diagonally dominant 
if, 
 |𝑎𝑎𝑖𝑖𝑖𝑖 | > ∑ |𝑎𝑎𝑖𝑖𝑖𝑖  |𝑖𝑖≠𝑖𝑖 , for all i=1,…,n.  
 The Levi-Desplanques theorem can be used to control 
invertibility of I +W(n). The diagonal entries in I +W(n) are all 
equal to 1. Therefore, it suffices to ensure that 
𝑎𝑎𝑎𝑎𝑥𝑥
𝑖𝑖 ��𝑊𝑊𝑖𝑖𝑖𝑖 � = |�𝑊𝑊(𝑚𝑚)�|∞ < 1

𝑖𝑖≠𝑖𝑖
. 

This can be done by dividing W(n) by its infinity norm 
whenever the latter exceeds some fixed 𝜃𝜃 < 1. An even 
stricter condition can be imposed by using a Frobenius norm 
in the same way as 

𝑊𝑊(𝑚𝑚) ←
𝜃𝜃

||𝑊𝑊(𝑚𝑚)||𝐹𝐹
𝑊𝑊(𝑚𝑚). 



 
 

 

 

To determine the optimal updates 𝑊𝑊(𝑚𝑚)at each iteration, 
first-order optimality constraints for the objective (5) are 
used. A special approximation of the objective function 
enables efficient computation of 𝑊𝑊(𝑚𝑚). 
 Let 𝐷𝐷(𝑚𝑚)

𝑘𝑘  and 𝐸𝐸(𝑚𝑚)
𝑘𝑘  denote the diagonal and off-diagonal 

parts of 𝐶𝐶(𝑚𝑚)
𝑘𝑘 , respectively. In order to simplify the 

optimization problem we assume that the norms of 𝑊𝑊(𝑚𝑚) and 
𝐸𝐸(𝑚𝑚) 
𝑘𝑘 are small, i.e. quadratic terms in the expression for the 

new set of matrices can be ignored. 
𝐶𝐶(𝑚𝑚+1)
𝑘𝑘 = �𝐼𝐼 + 𝑊𝑊(𝑚𝑚)��𝐷𝐷(𝑚𝑚)

𝑘𝑘 + 𝐸𝐸(𝑚𝑚)
𝑘𝑘 �(𝐼𝐼 + 𝑊𝑊(𝑚𝑚))𝑇𝑇 , 

𝐶𝐶(𝑚𝑚+1)
𝑘𝑘 ≈ 𝐷𝐷(𝑚𝑚)

𝑘𝑘 + 𝑊𝑊(𝑚𝑚)𝐷𝐷(𝑚𝑚)
𝑘𝑘 + 𝐷𝐷(𝑚𝑚)

𝑘𝑘 𝑊𝑊(𝑚𝑚)
𝑇𝑇 + 𝐸𝐸(𝑚𝑚)

𝑘𝑘 . 
With these simplifications, and ignoring already diagonal 
terms Dk, the diagonality measure (4) can be computed using 
expressions linear in W, 

𝐹𝐹𝑘𝑘 ≈ 𝐹𝐹�𝑘𝑘 = 𝑊𝑊𝐷𝐷𝑘𝑘 + 𝐷𝐷𝑘𝑘 𝑊𝑊𝑇𝑇 + 𝐸𝐸𝑘𝑘 .      (6) 
 The linearity of terms in (6) allows to explicitly compute 
the optimal update matrix 𝑊𝑊(𝑚𝑚)  minimizing the 
approximated diagonality criterion, 

𝑎𝑎𝑖𝑖𝑚𝑚
𝑊𝑊 ��((𝑊𝑊𝐷𝐷𝑘𝑘 + 𝐷𝐷𝑘𝑘𝑊𝑊𝑇𝑇

𝑖𝑖≠𝑖𝑖

𝐾𝐾

𝑘𝑘=1
+ 𝐸𝐸𝑘𝑘)𝑖𝑖𝑖𝑖 )2. 

The FFDIAG algorithm is able to approximate the joint 
diagonal matrix owing to the sparseness introduced by (6). If 
the 𝑁𝑁(𝑁𝑁 − 1) off-diagonal entries of the update matrix W are 
arranged as a vector 

𝑤𝑤 =  (𝑊𝑊12,𝑊𝑊21, …𝑊𝑊𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑖𝑖𝑖𝑖 , . . )𝑇𝑇 .  
where the order of elements in w reflects the pairwise 
relationship of the elements in W. If the 𝐾𝐾𝑁𝑁(𝑁𝑁 − 1) 
off-diagonal entries of the matrices Ek are also arranged as, 
𝑒𝑒 = �𝐸𝐸12

1 ,𝐸𝐸21
1 , . .𝐸𝐸𝑖𝑖𝑖𝑖1 ,𝐸𝐸𝑖𝑖𝑖𝑖1 , . . ,𝐸𝐸𝑖𝑖𝑖𝑖𝑘𝑘 ,𝐸𝐸𝑖𝑖𝑖𝑖𝑘𝑘 . . �. 

A large but very sparse, 𝐾𝐾𝑁𝑁(𝑁𝑁 − 1) × 𝑁𝑁(𝑁𝑁 − 1) matrix J is 
built in the following form 

𝐽𝐽 = �
𝐽𝐽1
⋮
𝐽𝐽𝑘𝑘
�  𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝐽𝐽𝑘𝑘 =   �

𝐷𝐷12
𝑘𝑘   
 ⋱  
  𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘

�, 

where each Jk is block-diagonal, containing 𝑁𝑁(𝑁𝑁 − 1)/2 
matrices of dimension 2×2.  

𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 = �𝐷𝐷𝑖𝑖
𝑘𝑘 𝐷𝐷𝑖𝑖𝑘𝑘

𝐷𝐷𝑖𝑖𝑘𝑘 𝐷𝐷𝑖𝑖𝑘𝑘
� , 𝑖𝑖, 𝑖𝑖 = 1, … . ,𝑁𝑁, 𝑖𝑖 ≠ 𝑖𝑖, 

where 𝐷𝐷𝑖𝑖𝑘𝑘  is a short-hand notation for the ii-th entry of a 
diagonal matrix Dk. The approximate cost function can be 
re-written as the linear least-squares problem 
𝐿𝐿(𝑤𝑤) = ��(𝐹𝐹�𝑖𝑖𝑖𝑖𝑘𝑘)2 = (𝑖𝑖𝑤𝑤 + 𝑒𝑒)𝑇𝑇(𝑖𝑖𝑤𝑤 + 𝑒𝑒).

𝑖𝑖≠𝑖𝑖𝑘𝑘
 

The solution to this problem put forward by [10] is  
𝑤𝑤 = −(𝐽𝐽𝑇𝑇𝐽𝐽)−1𝐽𝐽𝑇𝑇𝑒𝑒.         (7) 

Using the sparseness of J and e to enable the direct 
computation of the elements of w in (7), the matrix product 
JTJ can be written as a block-diagonal matrix 

𝐽𝐽𝑇𝑇𝐽𝐽 =   

⎝

⎜⎜
⎛
� (𝐷𝐷12

𝑘𝑘 )
𝑘𝑘

𝑇𝑇
𝐷𝐷12
𝑘𝑘   

 ⋱  
  � (𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 )

𝑘𝑘

𝑇𝑇
𝐷𝐷𝑖𝑖𝑖𝑖𝑘𝑘 ⎠

⎟⎟
⎞, 

whose blocks are 2x2 matrices. Thus the system (7) actually 
consists of decoupled equations, 

�𝑊𝑊𝑖𝑖𝑖𝑖
𝑊𝑊𝑖𝑖𝑖𝑖

� = −�𝑧𝑧𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖
𝑧𝑧𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖 �

−1
�𝑦𝑦𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 � , 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁, 𝑖𝑖 ≠ 𝑖𝑖  

where 𝑧𝑧𝑖𝑖𝑖𝑖 =  ∑ 𝐷𝐷𝑖𝑖𝑘𝑘𝐷𝐷𝑖𝑖𝑘𝑘𝑘𝑘  and   

𝑦𝑦𝑖𝑖𝑖𝑖 =  ∑ 𝐷𝐷𝑖𝑖𝑘𝑘
𝐸𝐸𝑖𝑖𝑖𝑖𝑘𝑘 +𝐸𝐸𝑖𝑖𝑖𝑖𝑘𝑘

2𝑘𝑘 = ∑ 𝐷𝐷𝑖𝑖𝑘𝑘𝐸𝐸𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 . 
 The matrix inverse can be computed in closed form, 
leading to the following expressions for the update of the 
entries of W  

   𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖
𝑧𝑧𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑖𝑖2

 

 
      𝑊𝑊𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖𝑖𝑖

𝑧𝑧𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖𝑖𝑖𝑖2
. 

Therefore only the off-diagonal elements (i ≠j) need to be 
computed and the diagonal terms of W are set to zero. This 
makes this algorithm faster than other JAD methods [5].  

C. Jacobi Angles for Simultaneous Diagonalization   
 
 Another approach for joint approximate diagonalization 
(JAD) is known as Jacobi angles for joint diagonalization. 
This method is based on the Jacobi technique which is a joint 
diagonality criterion optimized iteratively under plane 
rotations [7].   
 Consider a set, 𝐶𝐶 = {𝐶𝐶𝑘𝑘 |𝑘𝑘 = 1,𝐾𝐾}  of K, N×N matrices. 
The off-diagonal elements of C can be defined as 

 𝑜𝑜𝑜𝑜𝑜𝑜(𝐶𝐶) = ∑ |𝑐𝑐𝑖𝑖𝑖𝑖 |1≤𝑖𝑖≠𝑖𝑖≤𝑁𝑁
2        (8) 

where aij denotes the (i,j)-th entry of matrix C. Simultaneous 
diagonalization can be obtained by minimizing the composite 
objective ∑ 𝑜𝑜𝑜𝑜𝑜𝑜(𝑈𝑈𝐶𝐶𝑘𝑘𝑈𝑈𝐻𝐻)𝑘𝑘=1,𝐾𝐾 , by a unitary matrix U where 
the superscript H denotes the Hermitian transpose. The 
extended Jacobi technique for simultaneous diagonalization 
constructs U as a product of plane rotations globally applied 
to all the matrices in C. A plane rotation in the (i,j)-plane is a 
unitary matrix R = R(i,j,c,s) defined as  
𝑅𝑅 = 𝐼𝐼 + (𝑐𝑐 − 1)𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑇𝑇 − 𝑠𝑠𝑒𝑒𝑖𝑖𝑒𝑒𝑖𝑖𝑇𝑇 + 𝑠𝑠𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖𝑇𝑇 + (𝑐𝑐 − 1)𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖𝑇𝑇    
where 𝑐𝑐, 𝑠𝑠 ∈ 𝐶𝐶 and |𝑐𝑐|2 + |𝑠𝑠|2 = 1. 
It is desired for each choice of 𝑖𝑖 ≠ 𝑖𝑖, finding complex angles c 
and s that minimizes the following objective function: 

𝑂𝑂(𝑐𝑐, 𝑠𝑠) =  � 𝑜𝑜𝑜𝑜𝑜𝑜�𝑅𝑅(𝑖𝑖, 𝑖𝑖, 𝑐𝑐, 𝑠𝑠)𝐶𝐶𝑘𝑘𝑅𝑅𝐻𝐻(𝑖𝑖, 𝑖𝑖, 𝑐𝑐, 𝑠𝑠)�.
𝑘𝑘=1,𝐾𝐾

 

For a given pair (i,j) of indices, a 3×3 real symmetric matrix G 
is defined as 

𝐺𝐺 = 𝑅𝑅𝑒𝑒𝑎𝑎𝑅𝑅 � � ℎ𝐻𝐻(𝐶𝐶𝑘𝑘)ℎ(𝐶𝐶𝑘𝑘)
𝑘𝑘=1,𝐾𝐾

�. 

 



 
 

 

 

For any set A of N×N matrices the following theorem allows 
the Jacobi angles to be computed [7]. Under constraint 
|𝑐𝑐|2 + |𝑠𝑠|2 = 1, the objective function O(c,s) is minimized at, 

 𝑐𝑐 =  �𝑥𝑥+𝑎𝑎
2𝑎𝑎  , 𝑠𝑠 = 𝑦𝑦−𝑖𝑖𝑧𝑧

�2𝑎𝑎(𝑥𝑥+𝑎𝑎) and 𝑎𝑎 =  �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2,   (9) 

where [x,y,z]T is any eigenvector associated with the largest 
eigenvalue of G [7]. Proof of this theorem can be found in [7]. 
 Thus, the minimization of O(c,s) under the constraint 
|c|2+|s|2=1 is equivalent to maximization of real 3×3 quadratic 
form under unit norm constraint. The solution is given by unit 
norm eigenvector of G associated with the maximum 
eigenvalue. More theoretical analysis of this method can be 
found in [20]. 
 When Ck is a set of real symmetric matrices, the rotation 
parameters c and s become real: the last component of each 
vector h(Ck) then is zero and G can be reduced to a 2×2 matrix 
by deleting the last row and last column.    

III. SYNTHESIZED METHODS 
 We investigate the use of the FFDIAG algorithm and 
Jacobi angles method for approximate diagonalization to 
develop multiclass common spatial patterns.  
 The first algorithm is implemented by utilizing the 
FFDIAG method to jointly diagonalize M number of 
covariance matrices. The covariance matrices Ck are given in 
(3). The Frobenius norm is calculated according to (4) and the 
minimization problem shown in (5) is iteratively deduced as 
explained in the section II.  The resulting eigenvectors are 
employed to spatially filter the covariance matrices.    
 The second method based on Jacobi angles also takes the 
multiple covariance matrices as inputs. This corresponds to 
the matrix A in equation (8). The real part of the resulting 
diagonalized matrix is used to spatially filter the covariance 
matrices. 

 
Fig. 1: Architecture of Multiclass Common Spatial Pattern 
 
 Multiple discriminant analysis (MDA) is carried out in 
order to select the most discriminating features from the 
filtered covariance data. Thirteen features were selected in 
order to distinguish the four classes. These selected features 
were used to train the classification algorithms and the 10×10 
cross-validation accuracies are calculated. Fig. 1 depicts the 
architecture of the proposed multiclass CSP method.  
   The performances of the implemented spatial filters are 
compared with one another and one versus rest multiclass 
CSP using three multiclass classifiers. K-Nearest Neighbour, 
Classification and Regression Trees, and Support Vector 
Machine classifiers are implemented and the performances 
are compared.  

A. k-NN algorithm 
 The k-nearest neighbor (k-NN) [14] is a classifier that 
assigns the class label of a new data based on the class with 

the most occurrences in a set of k nearest training  data 
points usually computed using a distance measure such as the 
Euclidean distance. The k-nearest neighbor implementation 
in the Matlab Bioinformatics toolbox with k=5 is used in this 
paper. 

B. CART algorithm 
 Decision tree is a classifier which uses symbolic tree like 
representations of finite sets of if-then-else questions that are 
natural, intuitive and interpretable. They are multistage 
decision systems in which classes are sequentially rejected 
until we reach a finally accepted class. The feature space is 
split into unique regions, corresponding to the classes, in a 
sequential manner. Upon the arrival of a feature vector, the 
searching of the region to which the feature vector will be 
assigned is achieved via a sequence of decisions along a path 
of nodes of an appropriately constructed tree. Such schemes 
offer advantages when a large number of classes are involved 
[11].  
  The Classification and Regression Tree (CART) [12] 
implementation in the Matlab Statistics toolbox is used in this 
work. 

C. SVM algorithm 
 The Support Vector Machine (SVM) [13]  is a linear 
discriminant that maximizes the separation between two 
classes based on the assumption that it improves the 
classifier’s generalization capability. In this implementation a 
one versus rest multiclass SVM was applied to classify the 
four classes of data. A Gaussian kernel with penalty 
parameter (Bound on the lagrangian multipliers) of 45 was 
found to give the highest cross-validation accuracies.   
 The goal of pattern classification is to find a rule that 
assigns an object to one of several possible classes. According 
to the “No Free Lunch” theorem, there is no general 
superiority of any approach over the others in pattern 
classification. If one approach seems to outperform another in 
a particular situation, it is a consequence of its fitness to the 
particular pattern recognition problem [11]. Therefore, the 
performances of the classification algorithms were also 
analyzed in combination with the two aforementioned 
multiclass CSP algorithms for multiclass motor 
imagery-based BCI. 

IV. DATA AND EXPERIMENTAL PROCEDURE 
 The data set 2a of the fourth BCI Competition IV (2008) 
[4] is considered in this study. This data set is composed of 
EEG data collected from 9 subjects that have been recorded 
during two sessions on different days for each subject. The 
synchronous BCI data had been collected for four different 
motor imagery tasks. The imagination of movements of the 
left hand (class 1), right hand (class 2), both feet (class 3), and 
tongue (class 4) had been considered as the four motor 
imagery tasks. Each session had been made up of 6 runs 
separated by short breaks. One run had included 48 trials (12 
for each of the four possible classes), amounting to a total of 
288 trials per session. 
 The subjects had been seated on an armchair in front of a 
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computer screen and at the beginning of a trial (t = 0 s), a 

fixation cross had appeared on the black screen. Short 
acoustic warning tones had also been presented at the start of 

the trial. After two seconds (t = 2 s), a cue had been presented. 

This cue could have been in the form of an arrow pointing 

either to the left, right, down or up (corresponding to one of 

the four classes left hand, right hand, foot or tongue). The cue 

had appeared and stayed on the screen for 1.25 seconds and 
this was expected to induce the subjects to perform the 

desired motor imagery task. The subjects had been instructed 

to carry out the motor imagery tasks until the fixation cross 

disappeared from the screen at t = 6 sec. without any feedback 

on their performance. A short break had been given before the 

next trial and this procedure had been repeated for each of the 
6 runs in a session. The timing scheme of this paradigm is 

depicted in Fig.2. 

 

 
Fig. 2: Timing scheme of the BCI paradigm 

 

 EEG signals are recorded from 22 scalp positions, mainly 

covering the primary motor cortices bilaterally. The signals 
are sampled at 250 Hz and subject to a bandpass filter 

between 0.5 Hz and 100 Hz. The sensitivity of the amplifier is 

set to 100 μV. An additional 50 Hz notch filter had been 

utilized to suppress line noise. 

 EEG Signals are first band-pass filtered in the range of 
8–30 Hz and then samples were partitioned into ten parts 

before building the multiclass CSP spatial filter. Each part 

was used as test set only once in the following way. The 

spatial filters were calculated on the basis of the 90% portion 

(nine parts) and were then multiplied to these data. Next, the 

selected features were subjected to MDA. 
 For the classification of the four classes of EEG data three 

classifiers that support multiclass classification were 

considered. First a k-Nearest Neighbor Classifier was 

attempted. Classification Trees (CART) and Support Vector 

Machines (SVM) were also applied.  The time slice between 

0.5 and 2.5 sec. was used to train the classifiers and to 
calculate the spatial filters in MCSP. The performance of the 

proposed framework was assessed using cross-validation. 10 

by 10 Cross-validation was carried out on the training data 

set.  

 Each classifier was provided with the best 13 features 
selected from MDA. The classifier weights were calculated 

and these classifiers and the spatial filter were then applied to 

the remaining 10% of the data. The whole procedure was 

repeated ten times, i.e., a 10×10-fold cross-validation 

procedure [11] was performed and classification accuracies 

were determined. 

V. RESULTS 

 Cross-validation results obtained for the proposed methods 

of multiclass CSP based on FFDIAG and Jacobi Angles with 

k-NN classifier are depicted in table 1. One over rest  
application of the binary CSP is also presented in order to 

compare the performances.  

 Table 2 shows the cross validation results obtained for the 

same multiclass CSP method where the classification is 

carried out by Classification and Regression Trees (CART) 

algorithm. Results obtained for the classification by Support 
Vector Machines (SVM) is presented in table 3. 

 
TABLE 1 

CLASSIFICATION ACCURACIES OF CROSS VALIDATION (K-NN CLASSIFIER) 
 Subject 1 2 3 4 5 6 7 8 9 Avg. 

CSP 

–FFDIAG 
49.3 40.3 49.4 49.3 48.6 49.3 48.2 50.1 49.2 48.2 

CSP- 

Jacobi 
29.1 27.4 28.9 29.2 28.7 29.4 27.9 32.1 29.1 29.1 

CSP 
(OVR) 

26.3 25.1 26.2 25.1 26.9 24.3 26.1 27.0 25.8 25.9 

   
TABLE 2 

CLASSIFICATION ACCURACIES OF CROSS VALIDATION (CART CLASSIFIER) 
Subject 1 2 3 4 5 6 7 8 9 Avg. 

CSP 
–FFDIAG 

43.8 35.6 44.2 43.4 43.1 43.5 41.9 44.7 43.9 42.7 

CSP- 
Jacobi 

25.4 24.7 25.2 26.5 25.1 26.7 24.8 29.6 25.3 25.9 

CSP 
(OVR) 

26.1 24.8 25.9 24.5 26.3 24.1 25.4 26.8 25.3 25.5 

  
TABLE 3 

CLASSIFICATION ACCURACIES OF CROSS VALIDATION (SVM CLASSIFIER) 
Subject 1 2 3 4 5 6 7 8 9 Avg. 

CSP 
–FFDIAG 

63.2 58.8 64.2 42.1 39.4 42.6 56.3 69.3 45.9 53.6 

CSP- 

Jacobi 
33.4 30.9 31.2 33.7 32.4 33.1 31.8 35.3 33.5 32.8 

CSP 

(OVR) 
26.9 23.3 28.9 27.6 27.8 28.1 28.9 29.5 29.8 27.8 

 

 The highest average classification accuracy of 53.6% is 

recorded by the JAD method based on FFDIAG when the 

classification is carried out by multi-class SVM. The same 

JAD method records average accuracies of 48.2 and 42.7 

under k-NN and CART classification methods respectively. 
The classification accuracies of 10×10-fold cross-validation 

indicate that the JAD method based on FFDIAG clearly 

outperforms others. The Jacobi angles based method slightly 

outperforms the one versus rest binary CSP.  

VI. CONCLUSIONS 

 In this paper two machine learning approaches are adopted 

for multiclass Common Spatial Patterns for processing EEG 
measurements in multiclass motor imagery-based BCI based 

on JAD methods. MCSP extends the binary CSP technique to 

a truly multiclass paradigm and proves to be better than one 

versus rest application of the binary CSP.  

 The proposed JAD methods are compared on the BCI 

Competition IV for dataset 2a. Experimental results show that 
the proposed MCSP based on FFDIAG yields superior 

classification accuracy compared to the alternative MCSP 

methods. Furthermore, the FFDIAG method is much faster 

than the Jacobi angles method.   



 
 

 

 

 In the analysis carried out on the three classification 
algorithms it is identified that the SVM algorithm consistently 
gives a higher accuracy than the other two classification 
methods. Though k-NN also performs quite well in this data 
set, the nonlinearity of the implemented SVM classifier might 
have given it the edge over the other two linear classifiers.  
 Future work in this area would include the extension of the 
FFDIAG based multiclass CSP to the Filter Bank CSP 
(FBCSP) [19] method which was the winning method for the 
BCI Competition IV for dataset 2a.  
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