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Abstract— In this paper, a hybrid EEG-based brain computer
interface (BCI) is designed for two-dimensional cursor control.
In our approach, two brain activity patterns, i.e., motor imagery
and P300 potential, are used for controlling the horizontal
and the vertical movements of the cursor respectively. A real-
time BCI system based on this approach is implemented and
evaluated through an online experiment. Six subjects attending
this experiment can perform 2-D cursor control effectively. Our
experimental results show that the system has the following
merits compared with prior systems: 1) it does not rely on
intensive user training; 2) it allows cursor movement between
arbitrary positions.

Keywords: Brain-computer interface (BCI), electroen-
cephalogram (EEG), 2-D cursor control, mu rhythm, P300
potential.

I. INTRODUCTION

An important issue in BCI research is cursor control,
where the objective is to map brain signals to movements
of a cursor on a computer screen. In the EEG-based BCI
literature, most studies were focused on one dimensional
(1-D) cursor control [1], [2], [3], [4]. This type of BCI is
based upon detection and classification of the change of
mu (8-12 Hz) or beta (13-28 Hz) rhythm during different
motor imagery tasks, such as imagination of left- and right-
hand movement. However, a 1-D cursor control system
would allow the user to control either the vertical or the
horizontal movement of a cursor at a time. Compared with
1-D cursor control, multidimensional cursor control enables
a considerably enhanced interface between the user and the
machine, with a much wider range of applications. A typical
application of 2-D cursor control is computer mouse for
web browser. To date, most of the multi-dimensional cursor
control BCIs have been invasive [6]. On the other hand, the
development of noninvasive 2-D control BCI especially using
EEG is impeded by the difficulty in obtaining two indepen-
dent control signals from the noisy EEG data of poor spatial
specificity. Therefore, the first report of a EEG-based 2-D
cursor control BCI was remarkable [5]: the authors showed
that through guided user training of regulating two particular
EEG rhythms (mu and beta), two independent control signals
can be derived from combinations of the rhythmic powers.
The downside of the approach is the required intensive user
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training. In recent years, other forms of 2-D BCI were also
reported that usually adopted a classification approach: for
example using P300 potential in [8] or using steady-state
visual evoked potential (SSVEP) in [7]. However, these P300
and SSVEP based techniques produced discrete outputs only:
a constant movement speed along a few fixed directions.

Therefore, there is a need to develop a new BCI method
that would be capable of producing two independent control
signals while alleviating the necessity of intensive user train-
ing. In this paper, we propose a method for 2-D movement
control of a cursor. In our approach, the vertical movement
of the cursor is controlled by P300 potential, while the
horizontal movement is controlled by mu or beta rhythm.
A BCI system based on this method has successfully been
developed, which is composed of an asynchronous p300
control module and an asynchronous motor imagery control
module. Six subjects who attended our experiments are able
to effectively control the 2-D cursor. Besides the relatively
simple training task, our experiments and further data analy-
sis results show another other advantage of our method and
BCI system: the cursor can move from one randomly given
point to another randomly given point.

In fact, our system belongs to hybrid BCIs which receive
more and more attentions of researchers recently. In [9],
[10], an offline simulation of a hybrid BCI was presented
in which subjects performed two mental tasks independently
and then simultaneously. This hybrid BCI could use two
different types of brain signals common in BCIs: event-
related desynchronization (ERD) and steady-state evoked
potentials (SSEPs). The study in [9] suggested that such a
hybrid BCI was feasible and beneficial.

II. GRAPHICAL USER INTERFACE AND CONTROL MODELS

In this section, we present the graphical user interface
(GUI), the control models and the algorithms of our system.

Our GUI is shown in Fig. 1, in which the ball and the
square represent a cursor and a target respectively. The
workspace has a pixel size of 1166 × 721 pixels. The
ratios of the size of the cursor, the size of the target and
the workspace are fixed to be 0.00084 : 0.003 : 1. The
initial position of the cursor and the position of the target
are randomly generated in the screen. There are 8 buttons
distributed at the horizontal and vertical edges of the screen,
with 3 buttons labeled “up” at the top, 3 buttons labeled
“down” at the bottom, and two buttons labeled “stop” in the
middle.
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Each trial begins from the time at which the cursor and
the target appear on the screen. In each trial, the subject is
given a time limit of 60s to direct the movement of the cursor
towards a predefined target on the screen. Each trial contains
several rounds of button flashes. In a round, each of the 8
buttons flashes once in a random order. Note that the length
of each trial is not fixed.

In each trial, the subjects will attempt to move the cursor
to the target. The motion of cursor in left/right direction is
controlled by imagining left/right hand and up/down direc-
tion is controlled by looking at up/down buttons. Finally, if
he/she does not want to move the cursor in vertical direction,
then he can focus on one of the two “stop” buttons.

In our online system, the detection of P300 and the
detection of motor imageries are performed simultaneously.
This implies that the control of the cursor’s horizontal
movement and the control of the cursor’s vertical movement
are carried out simultaneously. In each trial of cursor control,
there are many times of P300 detection. In each round
of button flashes, there is a P300 detection. However, the
starting point and the end point of the EEG segment for
each p300 detection are not fixed. Thus the P300 control is
asynchronous. Similarly, there are many times of horizontal
movement control in each trial and each control is based on
a motor imagery detection. This control is also asynchronous
since the starting point of EEG segment for each detection
of motor imagery is not fixed.

up up up

down downdown

stop stop

Fig. 1. The GUI for 2-D cursor control

During the period of the cursor’s moving, the cursor’s
positions are updated every 200 ms. Now, we present our
control models and their corresponding algorithms.

A. Asynchronous control of vertical movement based
on P300 potential

In our system,when the cursor moves, it has a constant
speed in the vertical dimension and its direction of vertical
movement is determined by the result of P300 potential
detection. The following model is used for updating the
cursor’s vertical position,

y(k + 1) = y(k) + c(k)v0, (1)

where k represents the kth update of the position of the
cursor (the kth movement), c(k) ∈ {1,−1, 0} determines the
vertical movement direction of the cursor (1,−1 represent
the down and up movements respectively; 0 implies no
vertical movement), v0 is a positive constant representing
the speed of vertical movement. In this study, v0 = 10, i.e.,

the cursor moves 10 pixels vertically every update, which can
be adjusted according to each subject’s control performance.

The steps of our algorithm for detecting P300 potential and
determining the vertical movement direction of the cursor are
as follows:

(i) Feature extraction: The EEG signals are filtered be-
tween 0.1 and 20 Hz. Then a segment (e.g. 600 ms after a
button flash) of the EEG data of each channel for every flash
is extracted. Furthermore, downsample the segment by a rate
of 6 to obtain a data vector and concatenate them by channel
for each flash to create a single feature vector corresponding
to each button.

(ii) Train a support vector machine (SVM) classifier: The
subjects are instructed to focus attention on 6 buttons one by
one (3 “up” buttons and 3 “down” buttons). Each attention
lasts 64 consecutive rounds, where each round contains 8
flashes from the 8 buttons respectively. Using the feature
vectors of the training data set and their corresponding labels,
we train an SVM classifier.

(iii) Classification and P300 detection: For the lth round
in an update of the cursor’s position, we extract feature
vectors Fej,l (j = 1, · · · , 8) and obtain 8 scores denoted
as sj,l with the trained SVM model. Then calculate the
sum of scores for each button: ssj = sj,1 + · · · + sj,l,
j = 1, · · · , 8. Suppose that ssj0 = max{ss1, · · · , ss8},
ssj1 = max{{ss1, · · · , ss8} \ {ssj0}} (the second maximal
value). If 1 −

ssj1

ssj0

> θ0, then the system makes a decision

that P300 potential occurs at the j0th button and outputs a
direction of the cursor’s vertical movement corresponding to
the j0th button, where θ0 is a predefined positive constant
(e.g. 0.3 in this paper). Otherwise, the system has no output
and continues P300 detection of the next round. In this case,
the system does not change the direction of the cursor’s
vertical movement.

Remarks 1: (i) If P300 is detected at one of the three “up”
buttons, set c(k) = −1 (the cursor will go up); If P300 is
detected at one of the three “down” buttons, set c(k) = 1 (the
cursor will go down); If P300 is detected at one of the two
“stop” buttons, set c(k) = 0 (the cursor will have no vertical
movement). See the GUI in Fig. 1. (ii) In Algorithm 1, only
when the threshold condition 1 −

ssj1

ssj0

> θ0 is satisfied,

there is an output for the direction of the cursor’s vertical
movement. In our system, we set an upper bound of round
as 15. That is, if the threshold condition is not satisfied in
15 rounds, the system will give an output, i.e., the direction
of the cursor’s vertical movement corresponding to the j0th
button.

B. Asynchronous control of the horizontal movement
through motor imagery

In our system, the horizontal movement of the cursor is
controlled by subject’s motor imageries. The control model
is given by

x(k +1) = x(k)+
a

3
(f(k− 2)+ f(k− 1)+ f(k))+ b, (2)

where k represents the kth update of the position of the
cursor (the kth movement), x(k) is the horizontal coordinate
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of the cursor, f(k) is a SVM score, a and b are two constants.
f(k), a and b will be defined later. We introduce delays with
the last three time points into the control model (2) to make
the cursor move smoothly.

First, we show the method for calculating the SVM score
f(k) for the kth update. For every 200 ms, the system outputs
an f(k) using the most recent 1200 ms of EEG signals which
have been preprocessed. The preprocessing steps include (i)
spatial filtering with common average reference (CAR), (ii)
band-pass filtering in specific mu rhythm band (8-13Hz), (iii)
spatial filtering based on a common spatial pattern (CSP) [1]
transformation matrix W determined by a training data set.
The pre-acquired training data set contains 60 trials, in each
trial the subject performs a motor imagery of left/right hand.
Six channels of the preprocessed EEG signals are selected,
which correspond to the first three and the last three rows
of W . Their logarithm variances are calculated and a 6
dimensional feature vector is constructed. Applying a SVM
classifier trained by a training data set, we obtain a SVM
score f(k).

Next, we calibrate the parameters a and b using the EEG
data when the brain is in idle state (without any motor
imagery). The objective is to make the cursor not move left
or right when the brain has no motor imagery. This data set
contains N time segments of 200ms (N = 10 in this paper).
According to the method described above, we calculate the
SVM scores f(1), . . . , f(N).

Set

m =
1

N

N∑

k=1

f(k),

mi = min{f(k), k = 1, · · · , N},

mx = max{f(k), k = 1, · · · , N}, (3)

Then we calculate a and b as

a =
h

max{mx − m,m − mi}
, b = −am. (4)

In the above calibration, the parameter h in (4) is used for
adjusting the velocity of the cursor’s horizontal movement.
It may have different settings for different subjects. In our
experiments, h is fixed to 8 for all of the subjects.

Considering the model (2) and the above parameter setting
of a and b, we can find that the average horizontal movement

during the idle state 1

N

N−1∑
k=1

(x(k + 1) − x(k)) is close to

zero. Thus our calibration method has the advantage that the
cursor almost does not change its horizontal position if the
subject is in the idle state of motor imagery. This has been
demonstrated in our online experiments.

Combining the above algorithms for vertical movement
control and horizontal movement control, we obtain our
algorithm for 2-D cursor control of which the diagram is
shown in Fig. 2. It follows from Fig. 2 that for the kth
movement of the cursor, the horizontal coordinate x(k)
and the vertical coordinate y(k) are determined by motor
imagery and p300 potential respectively. Furthermore, the

horizontal movement control based on motor imagery and
the vertical movement control based on P300 are performed
simultaneously in our algorithm as well as in our online
BCI system. As will be shown in our data analysis, the two
control signals for the horizontal movement and the vertical
movement respectively are almost independent to each other.

EEG Signals (x(k), y(k))

x(k)

y(k)

Horizontal movement control based on motor imagery

Vertical movement control based on P300

Filtering (mu 
rhythm

extraction)

CSP feature
extraction

SVM
classification

Horizontal
coordinate
calculation

CAR

P300 feature 
extraction

P300 detection
with SVM

Vertical
coordinate
calculation

Low pass 
filtering

Fig. 2. Diagram of the algorithm for 2-D cursor control.

III. ONLINE EXPERIMENTAL RESULTS

Six subjects, five males and a female, aged from 22 to
30, attended our online experiments. Before our experiments,
two of them had some experience in using our 2-D cursor
control system because of the system’s set up. The other
four subjects had no any experience in using BCI systems.
The training time for effectively using our system for the 4
new user was from 2 independent sessions to 8 independent
sessions. For all new users, each training session lasted about
2 hours including preparation. All the training sessions for a
subject were arranged in several consecutive weeks.

During BCI operation, the subject sat facing a video
screen. Scalp electrodes recorded 30 channels (10-20 system)
of EEG signals with all channels referenced to the right ear.
The signals were digitized at 250 Hz.

Before a subject controlled the cursor, three data sets were
collected of which two were used for training P300 control
model and motor imagery control model respectively, and
the other one was used for calibration. The parameters of
our system were set as described in Section 2.

Once the parameters of the system were determined, the
subject used our system for 2-D cursor control. A trial began
when a target and a cursor appeared simultaneously at two
random positions on the screen. 100 ms later, the 8 buttons
began to flash in a random order. Each button was intensified
for 100 ms, while the time interval between two consecutive
button flashes was 120 ms. From the beginning of a trial,
the subject started to move the cursor to the target. The
trial ended when the cursor hit the target or the control time
exceeded a predefined value (60 s in our experiment). The
interval between two consecutive trials was 2 seconds.

Table I shows the experimental results including the num-
bers of trials, accuracy rates for hitting the target and the
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average time of a trial for the six subjects. Note that for each
subject, all the trials were performed in a single session.

TABLE I

RESULTS IN EXPERIMENT 1

Number of trials Hit rate (%) Average time (s)
Subject A 90 95.6 25.1
Subject B 160 90.6 29.3
Subject C 102 83.5 35.6
Subject D 80 82.5 33.6
Subject E 80 92.5 33.9
Subject F 80 92.5 28.2

From Table I, we can find out that the accuracy rates of
all the six subjects are satisfactory. However, the control
time of each trial was not short (about 30 s in average).
There are two main reasons: (i) The relative small size of
the cursor and the target. The ratio of the target size and the
workspace is just 0.03%. Therefore the subjects need a long
time to control the cursor to hit the target. (ii) Triggering
and effectively detecting P300 are time consuming to some
degree. To reduce the time for detecting P300 and improve
the speed of our system are our future work.

However, we would like to emphasize that our system
is relatively convenient for new users. For instance, in the
2-D cursor control system shown in [5], initial sessions
were designed for all users. In these initial sessions, the
transition from 1-D to 2-D control was accomplished by
gradually increasing the magnitude of movement in the
second dimension and/or by alternating between 1-D runs in
the vertical and horizontal dimensions and then switching to
2-D runs. In the present work, such special initial sessions
are not necessary for new users’ training. Generally, if a
subject is able to separately use P300-based BCIs and motor
imagery-based BCIs, he/she can use our system without
difficulty.

In our system, CSP filters are used to produce the control
signal for the control of horizontal movement of the cursor.
We now show the topographies of CSP filters to the signal
band-pass filtered with 8 − 12Hz and the power spectra of
two channels of raw EEG signals calculated based on the
training data set. For Subjects A and B, two of the selected
CSP filters (the first and the last rows of W ) are displayed
as scalp map on the left of Fig. 3, which are easily related
to the motor imageries of right and left hands respectively.
Plots on the right of Fig. 3 show the spectra calculated
from two channels (C3 and FC4) of raw EEG signals. The
discriminability of the brain signals corresponding to the
motor imageries of right and left hands is demonstrated.

IV. CONCLUSIONS

In this paper, we presented an approach and correspond-
ing system implementation for a 2-D cursor control. The
horizontal and the vertical movements of the cursor are
controlled by P300 potential and mu rhythm respectively. Six
subjects attended our online experiment. The results show
that the horizontal and vertical movements of the cursor can
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Fig. 3. Topographies of two selected CSP filters and the spectra of two
channels of raw EEG signals for two subjects. Left: for each subject, two
of the selected CSP filters (the first and the last rows of W ) displayed as
scalp maps. Right: for each subject, the spectra of two channels of raw EEG
signals with blue curves referring to the motor imagery of right hand and
red curves referring to the motor imagery of left hand.

be effectively and independently controlled by their P300
and mu (or beta) rhythm respectively. Using our system, the
user can move the cursor from a random position to the target
also located in a random position.
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