
  

  

Abstract—The online performance of a motor imagery-based 
Brain-Computer Interface (MI-BCI) influences its effectiveness 
and usability in real-world clinical applications such as the 
restoration of motor control. The online performance depends 
on factors such as the different feedback techniques and 
motivation of the subject. This paper investigates the online 
performance of the MI-BCI with an augmented-reality (AR) 3D 
virtual hand feedback. The subject experiences the interaction 
with 3D virtual hands, which have been superimposed onto his 
real hands and displayed on the computer monitor from a first 
person point-of-view. While performing motor imagery, he 
receives continuous visual feedback from the MI-BCI in the 
form of different degrees of reaching and grasping actions of 
the 3D virtual hands with other virtual objects. The AR 
feedback is compared with the conventional horizontal bar 
feedback on 8 subjects, of whom 7 are BCI-naïve. The subjects 
found the AR feedback to be more engaging and motivating. 
Despite the higher mental workload involved in the AR 
feedback, their online MI-BCI performance compared to the 
conventional horizontal bar feedback was not affected. The 
results provide motivation to further develop and refine the AR 
feedback protocol for MI-BCI. 

I. INTRODUCTION 
otor imagery involves the imagination of motor 
movement from the first-person perspective [1], which 

results in changes in the electroencephalogram (EEG). These 
changes could be translated into control signals in a non-
invasive Motor Imagery-based Brain-Computer Interface 
(MI-BCI). Potential clinical applications include the 
restoration of motor control [2], [3] for patients with severe 
motor disability who could not engage in motor movements 
without assistance. Motor imagery activates similar brain 
areas as the motor execution, hence it could form a 
“backdoor approach” to access the motor system [4] for 
rehabilitation. 

Due to the huge inter-subject variability in the brain signal 
characteristics [5], [6], an important challenge for practical 
applications of the MI-BCI lies in the processing of the EEG 
recordings during motor imagery. New signal processing and 
machine learning approaches are being developed that 
discriminate different brain states in different subjects to 
enable a high classification accuracy of the EEG signals [7]. 
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One such approach to overcome the huge inter-subject 
variability in MI-BCI is the Filter Bank Common Spatial 
Pattern (FBCSP) algorithm, which has shown effectiveness 
in performing an autonomous selection of key temporal-
spatial discriminative EEG characteristics, specific to the 
subject [8].  

However, the online performance of the FBCSP algorithm 
has yet to be evaluated extensively. The performance of the 
MI-BCI depends on its operation during online sessions,  
which demonstrates its effectiveness and usability [9] for 
real-world applications. The MI-BCI depends not only on 
the EEG processing algorithms but also on other real-time 
factors, such as the intra-subject variability of the brain 
signals across sessions [6] and motivation [10].  

Thus, feedback is an important component of the MI-BCI 
during online sessions. The MI-BCI translates the motor 
imagery action from the EEG data to a certain type of 
feedback shown to the subject. The subject learns EEG 
control [11] and adapts his brain activity concurrently [9] 
based on the information received from the BCI.  Typically, 
visual feedback in the form of a moving horizontal bar [7] or 
cursor control [5], is employed for BCI during online 
operations. Existing studies have also proposed the use of 
virtual reality (VR) environments as a type of feedback for 
the BCI [10], [12-14] due to its motivational effect when the 
subject experiences the computer-generated simulation of a 
real-world environment. In [15], the authors found that 3D 
virtual hands could induce the feeling of ownership of a 
virtual limb even in the absence of tactile sensory 
stimulation. Furthermore, observing hand movements could 
reinforce the motor imagery process [3]. Recent advances in 
VR research enable the integration of video and 3D virtual 
objects in an augmented reality (AR) environment whereby 
the computer-generated 3D virtual objects are superimposed 
onto the real world environment in real time [16]. Hence the 
AR environment could potentially be employed as a type of 
feedback in MI-BCI.  

Based on the findings and motivations discussed above, 
this paper investigates the online performance of the MI-
BCI, implemented using the FBCSP algorithm, with an 
augmented-reality (AR) 3D virtual hand feedback. The 
visual feedback is displayed on the computer monitor, which 
shows a real-time video of the subject’s real hands. 3D 
virtual hands have been superimposed onto his real hands in 
the display. Hence the subject experiences the interaction 
with the 3D virtual hands in his real environment from a first 
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person point-of-view. While performing single-trial motor 
imagery of the left hand or right hand, he receives 
continuous visual feedback from the MI-BCI. The MI-BCI 
translates his motor imagery action into different degrees of 
reaching and grasping actions of the 3D virtual hands with 
other virtual objects. The online performance of the MI-BCI 
will also be investigated with the conventional horizontal bar 
feedback.  

II. FILTER BANK COMMON SPATIAL PATTERN (FBCSP) 
The FBCSP algorithm [8] achieved relatively the best 

offline classification performance amongst the other 
submissions on the single-trial EEG motor imagery data 
from 9 subjects in Dataset IIa and Dataset IIb during the 
International BCI Competition IV [17], [18]. The FBCSP 
algorithm, comprises 4 stages that perform an autonomous 
selection of subject-specific temporal-spatial discriminative 
EEG characteristics for two-class MI-BCI, shown in Fig. 1. 
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Fig. 1: Architecture of the Filter Bank Common Spatial Pattern (FBCSP) 
algorithm for two-class motor imagery EEG data to extract subject-specific 
spatial-temporal features. MIBIF4 and NBPW represent the Mutual 
Information Best Individual Feature and the Naïve Bayes Parzen Window 
classifier respectively.  

 

The first stage of FBCSP performs frequency filtering and 
artifact removal using a filter bank that decomposes the EEG 
measurements into 9 pass-bands from 4-8Hz, 8-12Hz … 36-
40Hz. The second stage performs spatial filtering by linearly 
transforming the EEG data using the CSP algorithm [19]to 
the following feature vector for the ith trial, 
 [ ]1 2 9, , ,

i
=x cf cf cf… , (1) 

where cfbŒ°2m
 denotes the m pairs of CSP features for the 

b
th band-pass filtered EEG measurements, xiŒ°1¥(9*2m). 

The third stage performs feature selection of the extracted 
features using the Mutual Information Best Individual 
Features (MIBIF) algorithm. This algorithm selects the best 
k=4 features sorted by mutual information with the class 
label in descending order. Since CSP features are paired, the 
corresponding CSP features which come in pairs with the 
selected k features are also selected.  

The fourth stage performs classification using the Naïve 
Bayes Parzen Window (NBPW) Classifier is used and the 
classification rule is given as 
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where p(ω|x) denotes posterior probability of the class being 
ω=1,2, given the random trial [ ]1 2, ,

d
x x x=x …  and d 

denotes the number of selected features from the third stage. 

The choice of these algorithms is based on a previous 
study conducted on the BCI Competition III Dataset IVa [8]. 
For further details on the FBCSP algorithm, the reader is 
referred to.  

III. CONTINUOUS CUE-BASED ONLINE VISUAL FEEDBACK 
In this study, subjects are instructed to either perform left 

hand or right hand motor imagery, while continuous visual 
feedback is displayed during each trial. The posterior 
probability output p(ω|x) computed from the NBPW 
classifier varies the degree of visual feedback. 

A. Horizontal Bar Feedback 

The setup for the horizontal bar feedback is similar to [7] 
and the protocol for each single trial is shown in Fig. 2 
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Fig. 2: Timing Sequence of the Horizontal Bar Feedback Protocol for 
single-trial EEG in MI-BCI.   

During each trial, the visual cue is represented by an 
arrow, which specifies the class of motor imagery to 
perform. The horizontal bar appears 0.5s after the onset of 
the visual cue. The direction and length of the horizontal bar 
is proportional to p(ω|x). The MI-BCI translates the motor 
imagery of the subject into the position of the horizontal bar, 
which is updated every 0.5s till the end of the motor imagery 
period at 4s. If the subject could position the bar correctly 
for at least 1.5s, a visual ‘reward’ in the form of a smiley 
face is shown at the end of each trial. This is followed by a 
break period where the system does not process any input 
from the subject before the next trial begins. 

B. Augmented Reality 3D Virtual Hand Feedback 

The setup for the AR 3D virtual hand feedback is shown 
in Fig. 3.  
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Fig. 3: Timing sequence of the Augmented-Reality-based Hand Feedback 
Protocol for single-trial EEG in MI-BCI. 

The visual feedback is displayed on the monitor, which 
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shows a real-time video of the subject’s real environment 
captured by a webcam. 3D virtual hands are superimposed 
onto special markers which have been positioned onto the 
subject’s real hands. During each trial, the visual cue that 
specifies the class of motor imagery to perform is indicated 
by the appearance of the specific virtual hand. A 3D virtual 
cube is also displayed on the same side as the virtual hand.  

The subject receives visual feedback in the form of 
different degrees of the reaching action by the virtual hand 
towards the cube, since the distance from the virtual hand to 
the cube is proportional to 1-p(ω|x). In the event of a 
misclassification, the virtual hand stays at its original marker 
position. In addition, the subject does not observe the 
movement of the other virtual hand as it may cause 
interference in facilitating the required motor imagery [7]. 
The MI-BCI translates the motor imagery action 
continuously and updates the position of the virtual hand 
every 0.5s till the end of the motor imagery at 4s. If the 
subject could perform the correct reaching action for at least 
1.5s, the visual ‘reward’ is presented, whereby the virtual 
hand finally grasps the virtual cube and places it onto the top 
marker shown in Fig. 3. This is also followed by a break 
period where the system does not receive any input from the 
user before the next trial begins. 

IV. EXPERIMENTAL STUDY 
8 male healthy subjects, denoted S1 to S8, were recruited 

to evaluate the online performance of the MI-BCI using 
these two types of visual feedback. S1 had prior experience 
using the MI-BCI, while S2 to S7 were BCI-naïve. EEG data 
was recorded using 25 electrodes placed around the 
sensorimotor cortex area using the Neuroscan Quikcap with 
a sampling rate of 250Hz. There were 3 experiment sessions: 
1 screening and 2 online feedback sessions.  In each session, 
each subject performed 80 trials of left hand and 80 trials of 
right hand motor imagery. EEG data from the screening 
session was used to train the FBCSP algorithm for the online 
feedback sessions.  

During the screening session, a fixation cross is displayed 
on the computer screen for 1s at the start of each trial. 
Subsequently, a visual cue instructs the subject to perform 
left-hand or right-hand motor imagery without feedback for 
4s, followed by an inter-trial break period.160 trials of left 
hand and right hand motor imagery EEG data (equally 
distributed among the two classes) were collected from each 
subject in the screening session. The segment of 0.5s to 2.5s 
of EEG data after the onset of the visual cue was extracted to 
train the FBCSP algorithm. The choice of m for the CSP 
algorithm in equation (1) was set to 2, based on the selection 
parameters in previous studies [8], [18]. 

For the two online feedback sessions, the subjects were 
randomly split into two groups. The first group performed 
the horizontal bar feedback first, followed by the AR 
feedback. The second group performed the AR feedback 
first, followed by the horizontal bar feedback.  

A. Classification Results 
The FBCSP algorithm was evaluated on the screening data 

using 10×10-fold cross-validation and using session-to-
session transfer from the screening data onto each of the 
feedback session. The performance measure used is the 
classification accuracy in percentage; classification was 
performed on the same segment of EEG data used to train 
the FBCSP algorithm: 0.5s to 2.5s after the onset of the 
visual cue.  The classification results are shown in Table 1.  

 

TABLE 1 
CLASSIFICATION PERFORMANCE OF SCREENING AND ONLINE FEEDBACK 

SESSIONS. CV STANDS FOR CROSS-VALIDATION, S2S STANDS FOR SESSION-TO-
SESSION TRANSFER FROM SCREENING SESSION TO ONLINE FEDBACK SESSIONS 

S1 S2 S3 S4 S5 S6 S7 S8 AVG
10x10 CV Screening 88.1 78.1 79.6 43.4 88.0 81.3 66.2 58.5 72.9
S2S Bar Feedback 91.3 75.0 80.0 57.5 87.5 75.0 57.5 60.0 73.0
S2S AR Feedback 92.5 80.0 71.3 51.3 91.3 73.8 63.8 65.0 73.6

Mean classificiation accuracies

 
 

Statistical analysis using one-way ANOVA revealed no 
significant difference between the screening session and the 
feedback sessions (p-value = 0.99). Hence, the 10×10-fold 
cross-validation classification performance on the screening 
session is similar to the session-to-session transfer 
classification results on the online feedback sessions. 7 of the 
8 subjects performed better than chance accuracy in the 
screening session. Although S4 achieved <50% classification 
accuracy in the screening session, he was not excluded from 
the subsequent feedback sessions.  

The mean classification accuracy of the AR feedback 
session is slightly higher than that of the bar feedback 
session, but not statistically different (p-value = 0.76). 
Among the 3 subjects who performed >80% classification 
accuracies in the screening sessions, S1 and S5 performed 
slightly better for the AR feedback. However, S6 and S7 
performed poorer in both online feedback sessions compared 
to the screening session. 

Some subjects (S6 and S7) performed relatively poorer 
during the online feedback sessions compared to the 
screening session. The results are similar to the findings in 
another study [20], where some subjects performed slightly 
poorer for online feedback sessions because they got excited 
at the prospect of controlling the BCI in real-time and were 
thus overwhelmed by the new experience. The subjects in 
this study were mostly BCI-naïve and reported that the AR 
feedback seemed relatively more difficult to obtain the visual 
reward compared to the bar feedback. Some subjects felt that 
the protocol for the horizontal bar feedback was similar to 
that for the screening session, which represented a relatively 
more familiar task compared to the AR feedback. 

B. Classification time course 
Fig. 4 shows the time course of the classification accuracy 

averaged over all trials in the respective feedback sessions 
and over 7 subjects. S4 was omitted due to poor MI-BCI 
performance. Similar MI-BCI performance was observed for 
both types of visual feedback. Maximum classification 
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accuracies were around 2s to 3s after the onset of the visual 
cue. This is consistent with the training time segment, 0.5s to 
2.5s from the visual cue, used to train the FBCSP algorithm.  
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Fig. 4: Online performance averaged across 7 subjects for the two feedback 
sessions on the single trial EEG starting from the start of trial to the visual 
cue to the end of motor imagery period denoted as 0s, 1s and 5s 
respectively. A shifting time window of 2s is used to calculate the time 
course classification accuracies. 

C. Subject Opinions 

The subjects found the AR feedback more interesting and 
engaging as they could interact with virtual objects in their 
real environment. Some subjects were motivated by the 
perceived higher level of difficulty of the AR feedback, and 
were thus motivated to overcome the challenge and achieve a 
higher degree of control as exhibited in the higher 
classification accuracies for the AR feedback. Finally, these 
subjects reported having a greater level of satisfaction when 
they could receive the visual reward during the AR feedback. 

V. CONCLUSION 
 This paper investigated the online performance of the MI-

BCI using the Filter Bank Common Spatial Pattern (FBCSP) 
algorithm with an augmented-reality (AR) 3D virtual hand 
feedback, while performing left or right hand motor imagery. 
8 subjects (7 BCI-naïve) were recruited for this study, which 
found the AR feedback to be more challenging compared to 
the horizontal bar feedback. However, session-to-session 
transfer results from the training session without feedback to 
the online sessions with feedback showed that the subjects’ 
online MI-BCI performance using the AR feedback were not 
affected, compared to the bar feedback (p-value = 0.76). 
They felt more motivated to achieve the correct movement of 
the 3D virtual hands and the reward condition of grasping 
other virtual objects. The importance of motivation has been 
mentioned in a study [10], where motivated subjects had a 
better BCI performance. In the restoration of motor control, 
rehabilitation professionals believe that patient motivation 
plays an important role in determining rehabilitation 
outcome [21]. Evaluating the AR feedback forms another 
study to evaluate more portable and affordable types of 
feedback for a MI-BCI system that studies its clinical 
application in stroke rehabilitation [22]. Thus, findings from 
this study motivate future work on the development of more 
engaging forms of virtual feedback for the MI-BCI. 
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