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Abstract— The Filter Bank Common Spatial Pattern
(FBCSP) algorithm employs multiple spatial filters to automati-
cally select key temporal-spatial discriminative EEG character-
istics and the Naı̈ve Bayesian Parzen Window (NBPW) classifier
using offline learning in EEG-based Brain-Computer Interfaces
(BCI). However, it has yet to address the non-stationarity
inherent in the EEG between the initial calibration session and
subsequent online sessions. This paper presents the FBCSP that
employs the NBPW classifier using online adaptive learning that
augments the training data with available labeled data during
online sessions. However, employing semi-supervised learning
that simply augments the training data with available data
using predicted labels can be detrimental to the classification
accuracy. Hence, this paper presents the FBCSP using online
semi-supervised learning that augments the training data with
available data that matches the probabilistic model captured by
the NBPW classifier using predicted labels. The performances
of FBCSP using online adaptive and semi-supervised learning
are evaluated on the BCI Competition IV datasets IIa and
IIb and compared to the FBCSP using offline learning. The
results showed that the FBCSP using online semi-supervised
learning yielded relatively better session-to-session classification
results compared against the FBCSP using offline learning. The
FBCSP using online adaptive learning on true labels yielded the
best results in both datasets, but the FBCSP using online semi-
supervised learning on predicted labels is more practical in BCI
applications where the true labels are not available.

I. INTRODUCTION

THE Common Spatial Pattern (CSP) algorithm is com-
monly used to construct optimal spatial filters that

discriminates two classes of electroencephalogram (EEG)
measurements in motor-imagery-based Brain-Computer In-
terfaces (MI-BCIs) [1], [2]. The subject-specific band-pass
filtering of the EEG prior to spatial filtering influences the
effectiveness of the CSP algorithm [3]. Hence the Filter Bank
Common Spatial Pattern (FBCSP) algorithm was proposed
to effectively select appropriate subject-specific frequency
band-pass filtering for the CSP algorithm [4], and it per-
formed the best relative to other international submissions in
the BCI Competition IV dataset IIa and IIb [5].

The FBCSP algorithm employs the Naı̈ve Bayesian Parzen
Window (NBPW) classifier using offline learning to model
selected CSP features in the EEG training data recorded
from the calibration session. The trained NBPW classifier
is then used to classify the EEG data in the online test
session. However, when a subject is performing the mental
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tasks required for the operation of a BCI, the subject’s brain
is also engaged in other activities. Hence, non-stationarity
is inherent in EEG-based BCI, which often manifests in
the differences between the initial calibration session and
subsequent online operation of the BCI. The high variability
in the EEG is the result of the changes in the subject’s
brain processes due to fatigue, change of task involvement,
ambient noise and other factors [6]. Therefore, there is a
need to employ online learning in BCIs [7], and several
online adaptive [6], [8], [9], [10] and semi-supervised BCI
algorithms [11] were proposed. The study in [6] showed
that the major detrimental influence on the classification
performance is caused by the initial shift from the calibration
session to the online test session, and simple techniques
that adapts the classifier can overcome the inherent non-
stationarity of the EEG to improve the performance of the
EEG-based BCI.

This paper extends the FBCSP algorithm by employing the
NBPW classifier using online adaptive and semi-supervised
learning to address the inherent non-stationarity of the EEG
between the calibration session and subsequent online test
session. The performances of FBCSP using online adaptive
and semi-supervised learning are evaluated on the BCI Com-
petition IV datasets IIa and IIb using the session-to-session
transfer kappa values on the independent test session. The
performances are then compared to the FBCSP algorithm
using offline learning.

II. FBCSP ALGORITHM

The Filter Bank Common Spatial Pattern (FBCSP) algo-
rithm [4] illustrated in Fig. 1 comprises four progressive
stages of signal processing and machine learning on the
EEG data. The CSP projection matrix for each filter band,
the discriminative CSP features, and the classifier model
are computed from training data recorded in the calibration
session labeled with the respective motor imagery action.
These parameters computed from the training phase are then
used to compute the single-trial motor imagery action in the
online test session.

A. Band-pass filtering
The first stage employs a filter bank that decomposes

the EEG into multiple frequency pass bands using causal
Chebyshev Type II filters. A total of 9 band-pass filters are
used, namely, 4-8 Hz, 8-12 Hz,. . . , 36-40 Hz.

B. Spatial filtering
The second stage performs spatial filtering using the CSP

algorithm [12]. Each pair of band-pass and spatial filters in
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Fig. 1. Architecture of the Filter Bank Common Spatial Pattern (FBCSP)
algorithm for the offline calibration and online test session.

the first and second stages computes the CSP features that are
specific to the band-pass frequency range. Spatial filtering is
performed using the CSP algorithm by linearly transforming
the EEG using

Zb,i = WT
b Eb,i, (1)

where Eb,i ∈ Rc×τ denotes the ith single-trial EEG from the
bth band-pass filter; Zb,i ∈ Rc×τ denotes Eb,i after spatial
filtering, Wb ∈ Rc×c denotes the CSP projection matrix; c
is the number of channels; τ is the number of EEG samples
per channel; and T denotes the transpose operator.

The CSP algorithm computes the transformation matrix
Wb by solving the eigenvalue decomposition problem

Σb,1Wb = (Σb,1 + Σb,2)WbDb, (2)

where Σb,1 and Σb,2 are estimates of the covariance matrices
of the bth band-pass filtered EEG of the respective motor
imagery action, Db is the diagonal matrix that contains the
eigenvalues of Σb,1.

The spatial filtered signal Zb,i in equation (1) using Wb

from equation (2) thus maximizes the differences in the
variance of the 2 classes of band-pass filtered EEG. These
2 classes can comprise left hand versus right hand motor
imagery data. The m pairs of CSP features of the ith trial
for the EEG from the bth band-pass filter are then given by

vb,i = log
(
diag

(
W̃T

b Eb,iET
b,iW̃b

)
/tr

[
W̃T

b Eb,iET
b,iW̃b

])
,

(3)
where vb,i ∈ R1×2m; W̃b represents the first m and the last
m columns of Wb; diag(·) returns the diagonal elements
of the square matrix; tr[·] returns the sum of the diagonal
elements in the square matrix.

The FBCSP feature vector for the ith trial is formed using

vi = [v1,i,v2,i, . . . ,v9,i] , (4)

where vi ∈ R1×(9∗2m).
Denoting the offline training data from the calibration

session and the true class labels as V̄ and ȳ respectively
to make a distinction from the online test session data,

V̄ = [v̄T
1 , v̄T

2 , . . . , v̄T
nt

]T , (5)

ȳ = [ȳ1, ȳ2, . . . , ȳnt ]
T , (6)

where V̄ ∈ Rnt×(9∗2m); ȳ ∈ Rnt×1; v̄i and ȳi denote
the feature vector and true class label from the ith offline
calibration trial, i=1,2,. . . ,nt; and nt denotes the total number
of trials in the training data.

C. Feature selection

The third stage employs a feature selection algorithm,
namely the Mutual Information-based Best Individual Fea-
ture (MIBIF) algorithm [13], to select discriminative CSP
features from V̄ for the subjects task.

Given a set of features F =
[
fT
1 , fT

2 , . . . , fT
9∗2m

]
= V̄ and

true class labels ȳ from the training data given in 5 and 6
respectively, fT

j ∈ Rnt×1 is the jth column vector of V̄;
the MIBIF algorithm selects k best features that results in
the highest estimate of mutual information with the class
labels. Based on the study in [4], k = 4 is used. The
mutual information between feature fj with the class label
ω = {1, 2} is given by

I (fj ; ω) = H (ω) − H (ω|fj) , (7)

where H(ω) denotes the entropy and H (ω|fj) denotes the
conditional entrophy. The reader is referred to [13] for more
details on computing the entropy and conditional entropy.

Since the CSP features come in pairs, the corresponding
pair of features is also included if it is not selected. After
performing feature selection, the feature selected training
data is denoted as X̄ ∈ R n×d where d ranges from 4 to
8.

D. offline learning and classification

The fourth stage employs a classification algorithm,
namely the Naı̈ve Bayesian Parzen Window (NBPW) classi-
fier [13], to model and classify the selected CSP features. The
offline learning and classification rule of the NBPW classifier
is described as follows:

Given that X̄ =
[
x̄T

1 , x̄T
2 , . . . , x̄T

nt

]T denotes the entire
training data of nt trials from the offline calibration session,
x̄i = [x̄i,1, x̄i,2, . . . , x̄i,d] denotes the training data with the d

selected features from the ith trial, X =
[
xT

1 ,xT
2 , . . . ,xT

ne

]T

denotes the entire evaluation data of ne trials from the online
test session, xl = [xl,1, xl,2, . . . , xl,d] denotes the evaluation
data with d selected features from the lth trial; the NBPW
classifier estimates p(xl|ω) and P (ω) from training data
samples X̄ and predicts the class ω with the highest posterior
probability p(ω|xl) using Bayes rule

p (ω|xl) =
p (xl|ω)P (ω)

p (xl)
, (8)

where p(ω|xl) is the conditional probability of class ω given
evaluation trial xl; p(xl|ω) is the conditional probability of
xl given class ω; P (ω) is the prior probability of class ω;
and p(xl) is

p (xl) =
2∑

ω=1

p (xl|ω)P (ω) . (9)
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The computation of p(ω|xl) is rendered feasible by a
naı̈ve assumption that all the features xl,1, xl,2, . . . , xl,d are
conditionally independent given class ω in

p (xl|ω) =
d∏

j=1

p (xl,j |ω) . (10)

The NBPW classifier employs a Parzen Window [14] to
estimate the conditional probability p(xl,j |ω) in

p̂ (xl,j |ω) =
1

nω

∑

i∈Iω

φ (xl,j − x̄i,j , h) , (11)

where x̄i,j denotes the jth feature of the ith trial from the
training data; nω is the number of data samples belonging to
class ω; Iω is the set of indices of the trials of the training
data belonging to class ω; and φ is a smoothing kernel
function with a smoothing parameter h.

The classification rule of the NBPW classifier is given by

ŷl = arg max
ω=1,2

p (ω|xl) . (12)

where ŷl denotes the predicted label of the lth evaluation
trial.

E. One-Versus-Rest (OVR) multi-class extension

Given that ω, ω′ ∈ {1, 2, 3, 4} represents the left, right,
foot and tongue motor imagery in the BCI Competition IV
Dataset IIa, the OVR approach computes the CSP features
that discriminates each class from the rest of the classes [15].
For the 4 classes of motor imagery in the BCI Competition
IV Dataset IIa, 4 OVR classifiers are required. The classi-
fication rule of the NBPW classifier is thus extended from
equation (12) to

ŷl = arg max
ω=1,2,3,4

pOVR (ω|xl) , (13)

where pOVR (ω|xl) is the probability of classifying the
lth evaluation trial between class ω and class ω′ =
{1, 2, 3, 4}\ω; and \ denotes the set theoretic difference
operation.

III. FBCSP USING ONLINE LEARNING

In online evaluation sessions using motor imagery-based
BCI, the evaluation trials can be labeled or unlabeled. An
example of the former is an online feedback session whereby
subjects are instructed to perform specific motor imagery
actions and online feedback to the subjects is provided from
the classification result of each evaluation trial [16]. The
evaluation trials in this type of online session are thus labeled
by the instruction given to the subjects. An example of the
latter is an online session whereby the subjects are free to
perform any motor imagery action. The evaluation trials in
this type of online session are thus unlabeled since no specific
instructions are given. Adaptive learning for this type of
online session therefore involves learning with both labeled

and unlabeled data, which is known as semi-supervised
learning [17].

The FBCSP algorithm that employs the NBPW classifier
using offline learning has yet to address the high variability
between the initial calibration session and subsequent online
operation of the BCI. Motivated by the need to employ online
learning in BCIs [7] and that techniques that adapts the
classifier can overcome the inherent non-stationarity of the
EEG [6], the FBCSP algorithm is extended to use online
adaptive and semi-supervised learning in the following:

A. Adaptive learning
Besides using the labeled training data X̄ from the of-

fline calibration session to train the NBPW classifier, newly
acquired data from the online test session can be used for
online adaptive learning to train the NBPW classifier. In
the online setting, evaluation trials of data are available
for learning one by one. Thus online adaptive learning
proceeds with a sequence of one trial at a time [18].
Assuming that the evaluation data trial sequence is S =
{(x1, y1), . . . , (xl, yl), . . . , (xne , yne)} where xl denotes the
input feature vector, yl denotes the true label and ne de-
notes the total number of evaluation data trials; the online
adaptive learning algorithm predicts ŷl based on xl, the
previous evaluation trials {(x1, y1), . . . , (xl−1, yl−1)}, and
offline training data (X̄, ȳ). This online adaptive learning
framework is appropriate for real-time learning problems and
is analogous to the adaptive signal processing framework
[19]. The online adaptive learning of the NBPW classifier
is described as follows:

Assuming that the evaluation data X is evaluated sequen-
tially from trials 1 to ne, and the label of the lth evaluation
trial is known as yl; then the training data X̄ is augmented
with the data from the lth evaluation trial using

X̄ =
[
x̄T

1 , x̄T
2 , . . . , x̄T

nt
, x̄T

l

]T
(14)

Augmenting the training data with the evaluation trial thus
increases the total number of trials belonging to class ω = yl

and the total number of trials in the training data to nω =
nω +1|(ω = yl) and nt = nt +1 respectively. Subsequently,
the set of indices of the trials of the training data belonging
to class ωl is updated using

(Iω = Iω ∪ {nt}) | (ω = yl) . (15)

Since the computation of p(xl|ω) in (10) is based on the
estimate of the conditional probability p(xl,j |ω) in (11) for
j = 1 . . . d, augmenting the training data with the evaluation
data yields an updated estimate of p(xl,j |ω). Thus the
online adaptive learning of the NBPW classifier is performed
by augmenting the training data, which is computationally
feasible for online implementation.

B. Semi-supervised learning
The online semi-supervised learning algorithm is sim-

ilar to the online adaptive learning algorithm, but pre-
dicts ŷl based on xl, the previous evaluation samples
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{(x1, ŷ1), . . . , (xl−1, ŷl−1)}, and offline training samples
(X̄, ȳ).

Various semi-supervised learning algorithms are avail-
able in the literature [11], for example, the Expectation-
Maximization (EM) algorithm [17]. Iterative semi-supervised
learning using the EM algorithm is typically performed
offline whereby the training data is augmented with predicted
labels of the evaluation data in each iteration until conver-
gence is achieved [11]. In online BCI sessions, the evaluation
trials are acquired sequentially. Thus, online semi-supervised
learning has to be performed on each acquired evaluation
trial in order to improve the accuracy of subsequent evalu-
ation trials. Online semi-supervised learning for the NBPW
classifier can be performed by augmenting the training data
with the evaluation trial xl using the predicted label from
the classification result in equation (12).

However, simply augmenting the training data with all the
evaluation data using the predicted labels can be detrimental
to the classification accuracy of the NBPW classifier if the
assumed probabilistic model does not match the data [17].
Therefore, in order to ensure that the evaluation trial xl

matches the probabilistic model captured by the NBPW
classifier, the equation (14) and

(Iω = Iω ∪ {nt}) | (ω = ŷl) , (16)

are used for online semi-supervised learning if and only if

(p (ω|xl) > φ) | (ω = ŷl) (17)

where the predicted label ŷl is determined using equation
(12).

Thus the NBPW classifier using online semi-supervised
learning will only augment the training data with the eval-
uation trial xl using predicted label ŷl if and only if the
probability p (ω|xl) given that ω = ŷl is greater than a certain
predefined threshold φ.

IV. EXPERIMENTAL RESULTS

The performances of FBCSP using online adaptive learn-
ing (denoted aFBCSP) and semi-supervised learning (de-
noted sFBCSP) are then evaluated and compared with the
performance of FBCSP using offline learning (denoted oF-
BCSP) on the BCI Competition IV Datasets IIa and IIb. The
datasets comprised of training and evaluation data from 9
subjects each. For Dataset IIa, the training and evaluation
data from one subject each consisted 1 session of single-
trial EEG for four-class motor imagery of left-hand, right-
hand, foot and tongue. The data in each session is comprised
of 288 single-trials from 22 channels. For Dataset IIb, the
training data of one subject consisted 3 sessions of single-
trial EEG for two-class hand motor imagery whereas the
evaluation data consisted 2 sessions. The data in each session
is comprised of 120 single-trials from 3 bipolar channels.
Details of the protocols of Datasets IIa and IIb are available
in [20] and [16] respectively. The choice of m pairs of
CSP features is set to 2 for Dataset IIa and 1 for IIb. The
former is selected because a greater choice of m did not

significantly improve classification accuracy [12], [21]. The
latter is selected because there are only 3 channels of EEG
available, thus Wb ∈ R3×3 in equation (1) limited the
maximum selection of m = 1 for W̄b.

The performances are evaluated on the time segment of 0.5
to 2.5 of EEG after the onset of the visual cue using 5×2-fold
cross-validation and the results are summarized in Table I.
The online semi-supervised learning threshold φ is set to
0.999 for Dataset IIa and 0.950 for Dataset IIb. The selection
of φ affects the quality and quantity of online trials that
are augmented to the offline training data, but an extensive
analysis is beyond the scope of this paper.

TABLE I
KAPPA VALUE RESULTS OF 5×2-FOLD CROSS-VALIDATION ON THE

TRAINING DATA OF THE BCI COMPETITION IV DATASETS IIA AND IIB

USING OFFLINE LEARNING (OFBCSP), ONLINE SEMI-SUPERVISED

LEARNING (SFBCSP) AND ONLINE ADAPTIVE LEARNING (AFBCSP) ON

THE TIME SEGMENT OF 0.5 TO 2.5 S OF EEG AFTER THE ONSET OF THE

VISUAL CUE

Subject Dataset IIa Dataset IIb
oFBCSP sFBCSP aFBCSP oFBCSP sFBCSP aFBCSP

1 0.720 0.721 0.747 0.616 0.627 0.617
2 0.389 0.395 0.416 0.155 0.157 0.155
3 0.822 0.816 0.824 0.186 0.182 0.183
4 0.381 0.384 0.400 0.993 0.995 0.995
5 0.563 0.592 0.608 0.755 0.770 0.765
6 0.255 0.287 0.309 0.620 0.623 0.640
7 0.800 0.830 0.849 0.755 0.740 0.753
8 0.785 0.786 0.787 0.790 0.790 0.790
9 0.747 0.760 0.772 0.740 0.745 0.755

Average 0.607 0.619 0.635 0.623 0.625 0.628

The results of using sFBCSP and aFBCSP showed im-
provement upon oFBCSP in both Datasets IIa and IIb. The
results of aFBCSP are better than sFBCSP because true
labels in the test trials are used. This may not be practical in
situations where the subject are not given the instructions and
are free to perform any motor imageries. On the other hand,
sFBCSP is relatively more practical since predicted labels of
the test trials are used instead of true labels. Nevertheless,
the results from aFBCSP can be regarded as an upper limit
for evaluating the performance of sFBCSP. On the average,
sFBCSP achieved improvements of (0.619−0.607)/(0.635−
0.607) = 42% and (0.625 − 0.623)/(0.628 − 0.623) =
40% in Datasets IIa and IIb respectively compared to the
theoretical achievable limit using aFBCSP.

The performance of oFBCSP, sFBCSP and aFBCSP are
then evaluated using session-to-session transfer from the
training data onto the evaluation data. The performance
is again measured using the maximum Kappa value [22]
evaluated on the entire single-trial EEG from the onset of
the fixation cross. The results are summarized in Table II.

The results of session-to-session transfer of using sFBCSP
and aFBCSP again showed improvement upon oFBCSP in
both Datasets IIa and IIb. The results of aFBCSP are better
than sFBCSP because true labels in the test trials are used,
and the results of sFBCSP yielded improvement to oFBCSP
in both Datasets IIa and IIb. On the average, sFBCSP
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TABLE II
KAPPA VALUE RESULTS OF FBCSP USING SESSION-TO-SESSION

TRANSFER FROM THE TRAINING DATA TO THE EVALUATION DATA OF

THE BCI COMPETITION IV DATASET IIA AND IIB

Subject Dataset IIa Dataset IIb
oFBCSP sFBCSP aFBCSP oFBCSP sFBCSP aFBCSP

1 0.676 0.796 0.810 0.356 0.388 0.406
2 0.417 0.403 0.412 0.171 0.164 0.179
3 0.745 0.750 0.773 0.169 0.175 0.150
4 0.481 0.523 0.551 0.963 0.956 0.963
5 0.398 0.352 0.403 0.850 0.850 0.863
6 0.273 0.278 0.315 0.594 0.600 0.606
7 0.773 0.792 0.815 0.556 0.569 0.575
8 0.755 0.704 0.718 0.856 0.863 0.856
9 0.606 0.620 0.676 0.750 0.750 0.738

Average 0.569 0.580 0.608 0.585 0.590 0.593

achieved improvements of (0.580−0.569)/(0.608−0.569) =
28% and (0.590 − 0.585)/(0.593 − 0.585) = 63% in
Datasets IIa and IIb respectively compared to the theoretical
achievable limit using aFBCSP.

V. CONCLUSIONS

This paper presents the FBCSP algorithm using online
adaptive learning and semi-supervised learning to address
the issue of non-stationarity inherent in the EEG between the
initial calibration session and subsequent online sessions. The
former is used in online sessions where labeled single-trials
data are available whereas the latter is used in online sessions
where single-trials data are unlabeled. Since simply augment-
ing the training data with available data using predicted labels
can be detrimental to the classification accuracy, the FBCSP
using semi-supervised learning only augments the training
data with available data that matches the probabilistic model
captured by the NBPW classifier using predicted labels.

The results from the BCI Competition IV revealed that
the FBCSP using online semi-supervised learning yielded
relatively better session-to-session mean Kappa value on
Datasets IIa and IIb than the FBCSP using offline learning.
Furthermore, the FBCSP using online adaptive learning
yielded further improvements to the FBCSP using online
semi-supervised learning, but the FBCSP using online semi-
supervised learning on predicted labels is more practical in
BCI applications where the true labels are not available.

The potential of FBCSP using on-line adaptive learning
and semi-supervised learning is promising based on the
improved results. The limitations in this work is that the
frequency bands and the CSP are not adapted to the online
sessions. Future work in this direction will investigate the
online adaptive learning and semi-supervised learning of the
filter bank frequency selection and the CSP to yield better
results.
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