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ABSTRACT

Common Spatial Pattern (CSP) is widely used in discrimi-

nating two classes of EEG in Brain Computer Interface ap-

plications. However, the performance of the CSP algorithm

is affected by noise and artifacts, and the problem is more

pronounced in small training data. To overcome these draw-

backs, this paper proposes a new Spatially Sparsed CSP (SS-

CSP) algorithm by inducing sparsity in the spatial filters. The

proposed algorithm optimizes the spatial filters to emphasize

the regions that have high variances between classes, and at-

tenuates the regions with low or irregular variances which

can be due to noise or artifacts. The experimental results on

14 subjects from publicly available BCI competition datasets

showed that the proposed SSCSP algorithm significantly im-

proved the performance of the subjects with poor CSP accu-

racy by an average of 11%. The results also showed that the

obtained sparse spatial filters are more neurophysilogically

relevant.

Index Terms— Brain-Computer Interface, Common Spa-

tial Pattern, Sparse Common Spatial Pattern, Regularization

1. INTRODUCTION

A brain-computer interface (BCI) measures, analyzes and de-

codes brain signals to provide a non-muscular means of con-

trolling a device. Thus BCIs enable users with severe motor

disabilities to use their brain signals for communication and

control [1]. Most BCIs use electroencephalography (EEG) to

measure brain signals due to its low cost and high time reso-

lution [1].

Motor imagery-based BCI has attracted increased atten-

tion in recent years, which is neurophysiologically based on

the detection of sensorimotor rhythms called event-related

desynchronization (ERD) or synchronization (ERS) during

motor imagery [2]. Generally, motor imagery-based BCIs

involved the detection of μ-rhythm (8 − 13Hz) suppression

(ERD) or enhancement (ERS) patterns in single-trial EEG

data. However, the α-rhythm, which is related to the visual

and mental efforts, shares the same frequency range as the

μ-rhythm. Although the α-rhythm originates from the pos-

terior regions of the head, due to the volume conduction, it

interferes with the μ-rhythm that originates from the motor

cortex. In addition, the α-rhythm is quiet prominent, whereas

the μ-rhythm is weaker and can only be observed after appro-

priate signal processing. Therefore, the frequency overlap of

the α and μ rhythms, and the poor spatial resolution of EEG

data increase the difficulty of classifying motor imagery tasks

[3]. Consequently, spatial filters are widely used to increase

the signal-to-noise ratio (SNR) of the EEG data.

Among various spatial filters, the common spatial pat-

tern (CSP) algorithm has been highly successful in detect-

ing ERD/ERS [3]. Despite the popularity and efficiency of

the CSP algorithm, it is sensitive to noise and artifacts, and

the problem is more pronounced in small training data. To

overcome these drawbacks, the regularized CSP has been pro-

posed [4, 5, 6, 7]. The most common forms of regularized

CSP algorithms in literature applied regularization on esti-

mates of the covariance matrices [5, 6]. There are some reg-

ularized CSP algorithms that directly regularize the CSP ob-

jective function by imposing a-priori on the spatial filters [4,

7]. In [7], it was shown that regularizing the CSP objective

function generally performed better than regularizing the es-

timates of the covariance matrices.

This paper proposes a new Spatially Sparsed CSP (SS-

CSP) algorithm that induces sparsity in the spatial filters. The

approach of sparse CSP was initially proposed in [8, 9, 10],

but they focused only on EEG channel selection. Despite per-

forming EEG channel selection, these approaches generally

yielded lower classification performances than CSP using all

the EEG channels. Moreover, the proposed sparse CSP algo-

rithms in [9] and [10] are only capable of computing a single

sparse spatial filter. Although [8] proposed a method to find

more than one sparse spatial filter, it did not consider the cor-

relation between the spatial filters.

The proposed SSCSP algorithm in this paper improves the

performance of CSP by sparsifying spatial filters while keep-

ing them uncorrelated with each other. This approach opti-

mizes the spatial filters to emphasize the regions that have

high variances between classes, and attenuates the regions

with low or irregular variances which can be due to noise

or artifacts. Therefore SSCSP is capable of improving the

classification performance by removing irrelevant, noisy and

correlated information.
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2. METHOD

2.1. The CSP algorithm as an optimization problem

The CSP algorithm [3] is effective in discriminating two

classes of EEG data by maximizing the variance of one

class while minimizing the variance of the other class. Let

X ∈ RN×S denotes a matrix that represents the EEG of a

single-trial, where N and S denote the number of channels

and number of measurement samples respectively. The CSP

algorithm projects X to spatially filtered Z whereby Z=WX,

such that the rows of the projection matrix W are the spa-

tial filters, and the columns of W−1 are the common spatial

patterns. The CSP algorithm computes W by simultaneous

diagonalization of the covariance matrices from both classes.

For each centered X, the normalized covariance matrix can

be obtained from

C =
XXT

trace(XXT )
, (1)

where T denotes the transpose operator, and trace(x) gives

the sum of diagonal elements of x. The covariance matrices

of each class, C1 and C2, are computed by averaging over

multiple trials of EEG data. The composite covariance matrix

and its eigenvalue decomposition are given by

CC = C1 + C2 = FCψFT
C , (2)

where FC is a matrix of normalized eigenvectors with corre-

sponding matrix of eigenvalues ψ. The whitening transfor-

mation matrix

P = ψ−1/2FT
C , (3)

transforms the covariance matrices as

C′
1 = PC1PT , C′

2 = PC2PT , (4)

where C′
1 and C′

2 share common eigenvectors, and the sum

of corresponding eigenvalues for the two matrices are always

one, such that

C′
1 = UΛ1UT , C′

2 = UΛ2UT , Λ1 +Λ2 = I. (5)

The projection of the whitened EEG signals onto the

eigenvectors corresponding to the largest eigenvalues of Λ1

and Λ2 gives feature vectors that are optimal for discrimi-

nating two groups of EEG [11]. Hence, the CSP projection

matrix W = UT P.

The CSP algorithm in computing the projection matrix W
can be formulated as an optimization problem:

min
wi

i=m∑

i=1

wiC2wT
i +

i=2m∑

i=m+1

wiC1wT
i

Subject to:

wi(C1 + C2)wT
i = 1 i = {1, 2, ..., 2m}

wi(C1 + C2)wT
j = 0 i, j = {1, 2, ..., 2m} i �= j,

(6)

where Ci denotes the covariance matrix of class i; wi ∈
R1×N , i = 1, .., 2m, respectively indicate the first and last

m rows of CSP projection matrix that correspond to the m
largest eigenvalues of Λ1 and m largest eigenvalues of Λ2.

Due to the equality constraints in (6), it is a non-convex

Quadratically Constrained Quadratic Programming (QCQP)

problem, which can be solved using several methods such

as Sequential Quadratic Programming (SQP) and Augmented

Lagrangian methods.

2.2. Spatially Sparsed CSP (SSCSP)

In this paper, the Spatially Sparsed CSP (SSCSP) algorithm is

proposed by inducing sparsity in the spatial filters. The pro-

posed algorithm optimizes the projection matrix of the CSP

algorithm by intensifying the weights of regions with high

variances between the classes, and by attenuating the weights

of the regions with low and irregular variances that may be

due to noise or artifacts. The aim of the proposed algorithm is

to reduce the effects of noisy, irrelevant and correlated chan-

nels by making the spatial filters sparse, such that the general-

ization performance can be improved in whereby the training

set is small or the data are noisy.

Sparsity can be induced in the spatial filters by adding

a l0-norm regularization term into the optimization problem

given in equation (6). ‖x‖0, the l0-norm of x, is the spar-

sity measure giving the number of non-zero elements of x.

However, solving a problem with the l0-norm is combina-

torial in nature and thus computationally prohibitive. Fur-

thermore, since an infinitesimal value is treated the same as

a large value, the presence of noise in the data may render

l0-norm completely ineffective in inducing sparsity. There-

fore, instead of l0-norm, the approximation below is used to

measure the sparsity [12]

‖x‖0 −→ ‖x‖1
‖x‖2 , (7)

where ‖x‖k = (
∑n

i=1 |xi|k)1/k for k ≥ 1, and n denotes

the total number of elements of the vector x. Using the pro-

posed sparsity measure in (7), the sparsest possible vector

whereby only a single element is non-zero has a sparseness

of one, whereas a vector with all equal non-zero elements has

a sparseness of
√
n. The proposed SSCSP algorithm is then

formulated as

min
wi

(1−r)(
i=m∑

i=1

wiC2wT
i +

i=2m∑

i=m+1

wiC1wT
i )+r

i=2m∑

i=1

‖wi‖1
‖wi‖2

Subject to:

wi(C1 + C2)wT
i = 1 i = {1, 2, ..., 2m}

wi(C1 + C2)wT
j = 0 i, j = {1, 2, ..., 2m} i �= j,

(8)

where r (0 ≤ r ≤ 1), is a predefined parameter that spec-

ifies a trade-off between the classification accuracy and the
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sparsity. When r = 0, the solution is essentially the same as

the CSP algorithm. The methodology to find the optimal r
is discussed in Section 4. Finding more than a single spatial

filter concurrently, and keeping them uncorrelated are two of

advantages of our method to the previously proposed sparse

CSPs [8, 9, 10].

The proposed SSCSP formula is a nonlinear optimization

problem with quadratic equality constraints. In fact, the con-

straints lead to filtered signals which are uncorrelated in both

classes. Since the wi rows need to be appropriately initialized

in the iterative optimization algorithm, in this study, for r �=0,

the spatial filters obtained from the CSP algorithm are used as

the starting point.

3. EXPERIMENTS

In this study, the EEG data from 14 subjects of two publicly

available data sets of BCI Competitions were used.

1- Data set IIa [13] from BCI competition IV: This data

set contains EEG signals recorded from 9 subjects (named

A1, A2, ..., A9) using 22 electrodes per subject. During the

experiment, the subject was given visual cues that indicated

four motor imageries should be performed: left hand, right

hand, feet and tongue. Only the EEG signals corresponding

to the right and left motor imagery tasks are used in this paper.

A training and a testing set were available for each subject,

and both sets contain 72 trials for each class.

2- Data set IVa [14] from BCI competition III : This data

set comprises EEG signals from 5 subjects who performed

right hand and foot motor imagery tasks. The EEG signals

were recorded from 118 electrodes. 280 trials were available

for each subject, where 168, 224, 84, 56 and 28 trials com-

posed the training sets for subjects B1, B2, B3, B4 and B5 re-

spectively. Subsequently, the remaining trials composed their

test sets. This data set enables us to evaluate the performance

of our method against small training sets.

For each data set, signals from 0.5 to 2.5 seconds after

the cue were applied in this work (as done by the winner of

BCI competition IV, data set IIa). EEG signals were filtered

into 8 to 35 Hz frequency band using elliptic filters, since

this frequency band included the range of frequencies that are

mainly involved in performing motor imagery. Thereafter the

variances of two first and two last rows of the filtered signals,

obtained by SSCSP, were used as inputs of the SVM classifier.

4. RESULTS AND DISCUSSION

The regularization parameter r given in (8) induces a trade-off

between the classification accuracy and the sparsity. Increas-

ing r, results in more sparse filters, whereas it may decrease

the accuracy because some useful information is lost. There-

fore, the optimal r value should be chosen in a way to improve

the accuracy as much as possible. Fig.1 shows the effect of

varying r on the accuracy of the test data for two subjects: (a)
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Fig. 1. Effects of varying r on the accuracy for subjects: (a)

A1 and (b) A2. The dashed line denotes the accuracy obtained

by CSP.

A1 and (b) A2. The results show that compared to the CSP al-

gorithm, the regularization r improves the accuracy of subject

A2 up to 14% whereas the improvement for subject A1 does

not exceed 0.7%. It is because the subject A1 with 91.7%

CSP accuracy already has clean and noiseless data, whereas

the accuracy of A2 is close to chance level, thus there is more

room for improvement for subject A2 compared to A1.

In this study, the optimal subject-specific r was chosen

based on testing a set of different small r values (for instance

r ∈ {0, 0.01, 0.02, ..., 0.1}) on the training data. The r value

with the highest averaged 10×10 folds cross validation ac-

curacy was selected as the optimal r. Interestingly enough,

in this method, the accuracy achieved from the spatial filters,

corresponding to r=0 is also compared with the other r val-

ues results. Since the filters obtained from r = 0 are equal

to the standard CSP ones, the best filters between CSPs and

SSCSPs are selected.

Tables 1 and 2 compare the classification accuracies of the

testing data sets for CSP and SSCSP based methods. We used

the filters corresponding to the two largest and two smallest

eigenvalues of the covariance matrices for CSP and SSCSP.

The results show that SSCSP outperformed the CSP on aver-

age around 3% and 11%, respectively for the first data set with

22 overall channels, and the second data set with 118 overall

channels. With a closer look at the results, we can conclude

that SSCSP significantly improved the results for the subjects

with poor CSP accuracies (e.g., A2, A5, A6, B1, B3, B4,

B5)(10.95% averaged improvement and p=0.004), while left

the results of the subjects with good CSP performance (e.g.,

A1, A3, A7,...) roughly unchanged. It makes sense, since the

aim of the proposed algorithm is to deal with noisy and lim-

ited data, but not necessarily to improve the already clean and

good data.

Two most significant improvements are related to B4 and

B5 with respectively 22% and 16%. Interestingly, these sub-

jects have the smallest training data sets (56 and 28 trials). So

we can hypothesize that inducing sparsity in the CSP algo-

rithm helps to find good filters even with a small amount of

training data.

Fig.2 presents some examples of the spatial filters ob-

tained from CSP and the proposed SSCSP algorithm. In gen-
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Table 1. Performance comparison of CSP and SSCSP applied

on the first data set with overall 22 channels.

Data Set IIa, BCI Competition IV
Subject A1 A2 A3 A4 A5 A6 A7 A8 A9 Mean±Std

CSP 91.7 54.9 99.3 78.5 63.9 59 81.9 96.5 92.4 79.8±16.9

SSCSP 92.4 68 99.3 78.5 69.4 66 81.9 96.5 91 82.55±12.8

Table 2. Performance comparison of CSP and SSCSP applied

on the second data set with overall 118 channels.

Data Set IVa, BCI Competition III
Subject B1 B2 B3 B4 B5 Mean±Std

CSP 66.96 92.85 47.44 48.66 57.14 62.6±18.6

SSCSP 73.21 96.42 54.08 70.53 73.41 73.5±15.1

eral, these pictures show that CSP filters appear as messy,

with large weights in several unexpected locations from a neu-

rophysiological point of view. On the contrary, SSCSP filters

are physiologically more relevant, with strong weights over

the motor cortex areas and smooth weights over the other ar-

eas. This shows that the proposed SSCSP leads to filters that

are neurophysiologically more relevant and interpretable.

Fig. 2. Spatial filters obtained from CSP and SSCSP algo-

rithms, for subjects A4, A6, B5.

5. CONCLUSION

This paper proposed a new Spatially Sparesed CSP (SSCSP)

algorithm to improve the performance of BCI systems. The

proposed algorithm formulates the CSP algorithm as a opti-

mization problem with the addition of a regularization term to

induce sparsity. Hence, the proposed algorithm optimizes the

spatial filters of the CSP to emphasize the channels with high

variances between the classes and to attenuate the noisy chan-

nels with low and irregular variances. Experimental results

demonstrated that the optimal regularization term from cross-

validation on the training data yielded sparse spatial filters

that are neurophysiologically more relevant and interpretable.

The results also showed that the proposed algorithm signif-

icantly improved the performance of the subjects with poor

accuracy to about 11%, while the accuracy of good subjects

remained roughly unchanged. Therefore, the proposed SS-

CSP algorithm is effective in improving the performance of

subjects with noisy and limited data.
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