
  

  

Abstract—Intracranial Pressure (ICP) monitoring signal 
collected in Neuro Intensive Care Units often contains large 
amount of artifacts. The artifacts not only directly lead to false 
alarms in automatic Intracranial Hypertension (IH) alert 
systems, and they also severely contaminate the characteristics 
of the underlying signal, which makes accurate forecasting of 
impending IH impossible. Therefore, in this paper, we propose 
a novel solution to effectively remove artifacts from ICP 
monitoring signals. The proposed method effectively detects 
artifacts by decomposing the ICP monitoring signal with 
Empirical Mode Decomposition (EMD) method. An iterative 
filtering method is also proposed to extract artifacts from the 
decomposed components of ICP signals. The proposed filter is 
robust. That is, the parameters of the iterative filter are 
estimated with robust statistics, which ensures the performance 
of the proposed filter will not be unduly affected by artifacts. 
The detected artifacts are then imputed based on the Auto-
Regressive Moving Average (ARMA) model to preserve the 
original characteristics of the ICP signal. The effectiveness of 
the proposed artifact removal method is experimentally 
justified based on the ICP monitoring signals of 59 patients.  

I. INTRODUCTION 
Intracranial Pressure (ICP) refers to the internal 

pressure of our skulls. For patients in Neuro Intensive Care 
Units (NICUs), especially traumatic brain injury patients, 
continuous ICP monitoring is extremely crucial to prevent 
secondary brain damages caused by Intracranial 
Hypertension (IH) [1]. In NICUs, ICP monitoring currently 
relies solely on visual inspections by neuro-clinicians and 
nurses; and ICP controlling interventions are treated on 
patients, only after prolonged ICP elevations are observed. 
The current approach is human-intensive, prone to errors, 
reactive and inefficient. Automatic alerts for onsets of IH 
and effective forecasting models to predict impending 
episodes of IH are greatly desirable. However, the 
continuous ICP monitoring signals, which are recorded in 
real NICU environments, are often contaminated by 
artifacts. The artifacts can be caused by multiple factors, 
such as movement of patients, connection error, faults in 
monitoring system, human error, etc. Artifacts directly lead 
to high false alarm rates in automatic IH alert systems. 
Artifacts also contaminate the characteristics of the 
underlying data, which makes accurate forecasting of 
impending IH impossible. Therefore, in this paper, we 
propose a novel solution to effectively remove artifacts from 
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ICP monitoring signals. 
In 30 years of ICP related research [2], many works 

[3,4,5] have been focusing on the prediction of impending 
IH episodes. However, achieved prediction accuracy is still 
unsatisfactory. One of the reasons is that the removal of 
artifacts in ICP signals has yet been effectively addressed. 

For artifact removal, low-pass filtering is the most 
conventional method. Low-pass filter is only applicable to 
stationary signals, whose frequency spectrum is consistent 
over time. However, stationarity, in general, does not hold 
for ICP monitoring signals. Adaptive filtering [6] is a more 
advanced filtering method. The turning of adaptive filters 
requires a referencing signal, but this referencing signal is 
not available in the case of ICP monitoring. Independent 
Component Analysis (ICA) has also been applied for artifact 
removal in biomedical signals. ICA decomposes signals 
based on the assumption that the signal is the summation of 
multiple statistical independent components. This 
assumption may apply for signals, such as ECG [7] & MEG 
[8], but it does not hold in ICP signals. Wavelet 
transformation has been demonstrated to be effective for 
artifact removal in biomedical signals [6], but optimum 
performance can only achieved with appropriate choice of 
basis function. 

In this paper, we propose to effectively detect artifacts by 
decomposing the ICP monitoring signal with Empirical 
Mode Decomposition (EMD) [9] method. Due to its self-
adaptiveness and high efficiency, EMD recently has been 
widely used in the analysis of non-stationary non-linear 
signals. An iterative filtering method is further proposed to 
extract artifacts from the decomposed components of ICP 
signals. The proposed filter is robust, i.e. parameters of the 
iterative filter are estimated with robust statistics [10]. 
Unlike classical statistical methods, the performance of 
robust statistics will not be unduly affected by artifacts and 
outliers. The detected artifacts are then imputed based on the 
Auto-Regressive Moving Average (ARMA) model to 
preserve the original characteristics of the ICP signal. 

II. PROBLEM DEFINITION 
In NICUs, ICP levels are invasively measured with a 

fibre-optic intraparenchymal gauge (Codman and Shurtleff, 
Taynham, MA). Collected ICP monitoring signals are often 
contaminated by a considerable amount of artifacts. Based 
on our study, on average, 5% of data points in the collected 
ICP signals are contaminated by artifacts; and, in the worse 
case, more than 20% of signals can be contaminated. Figure 
1 (a) shows an example of ICP monitoring signal. 
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Figure 1 (a) Artifacts in ICP monitoring signal. (b) An example of 

artifact episode. 

To remove artifacts from ICP monitoring signals, first and 
foremost, it requires accurate artifact detection. As 
illustrated in Figure 1 (a), the artifacts can be visually 
identified as tall and sharp “spikes”. These spikes are 
recognized as artifacts, because they indicate rapid and 
dramatic oscillations of ICP levels, which, as advised by 
neuroclinicians, are physiologically impossible. Moreover, 
as highlighted in Figure 1 (b), an artifact is not formed with 
just one or two data points but instead a cluster of them. We 
name the cluster of artifact data points an “artifact episode”. 
An artifact episode can be defined by its “location” and 
“width”. Therefore, the objective of artifact detection is to 
accurately identify the locations and widths of artifact 
episodes. The second task of artifact removal is then artifact 
imputation. Artifact imputation aims to impute data points 
of identified artifact episodes with appropriate values, so that 
original characteristics of the underlying signal are 
preserved. 

III. ARTIFACT REMOVAL 
To address the two main tasks in artifact removal, the 

proposed method is composed of two components: the 
artifact detection component and the artifact imputation 
component. 

A. Artifact Detection 
The objective of artifact detection is to identify the 

locations and widths of artifact episodes in ICP monitoring 
signals. In this subsection, we first discuss the observations 
we have made by decomposing the non-stationary ICP 
signals based on the Empirical Mode Decomposition 

(EMD). A robust filter is then proposed to extract artifact 
data points from the decomposed components of ICP 
signals. Combining the results of EMD and robust filtering, 
an iterative artifact detection method is proposed.  

 
Empirical Mode Decomposition 

As shown in Figure 1 (a), ICP signals are non-stationary: 
evolving trends are observed, and, moreover, trends vary 
from time to time. Due to the non-stationarity of ICP signals, 
filters in both frequency and time domains cannot be directly 
applied to extract artifacts. To address this problem, we 
propose to decompose the ICP monitoring signal into more 
stable components based on Empirical Mode Decomposition 
(EMD). 

EMD recently has been widely applied for the analysis of 
non-stationary time-series data, ranging from financial stock 
prices [11] to biomedical signals [12]. EMD decomposes the 
non-stationary time-series signal into a finite and often small 
number of Intrinsic Mode Functions (IMF). An IMF is 
defined in [11] as any function having the same number of 
zero-crossing and extrema, and also having symmetric 
envelopes defined by the local maxima, and minima 
respectively.  

 
Figure 2 Decomposed intrinsic mode functions (IMFs) of the ICP signal 

shown in Figure 1(a). 

As shown in Figure 2, with EMD, the ICP monitoring 
signal shown in Figure 1(a) is decomposed into 16 IMFs. 
More importantly, we have made the following observations 
over the decomposed IMF components: 
I. After decomposition, the evolving trends in the original 

ICP signal are removed from the high frequency IMF 
components (IMF1~8). As a result, filtering techniques 
can now be applied to the high frequency IMF 
components to extract artifact episodes. 

II. Large magnitude oscillations in the 1st IMF component 
are effective indicators for the locations of artifact 
episodes. As graphically demonstrated in Figure 3 (a), 
large magnitude oscillations in the 1st IMF component 
perfectly align with all the artifact episodes in the 
original ICP signal. 

III. Based on the 1st IMF component, although we can 
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effectively identify the locations of artifact episodes, we 
tend to underestimate the widths of artifacts episodes. 
However, as shown in Figure 3 (b), we discover that: a 
more accurate width estimation can be achieved by 
iteratively “growing” (expanding) the initial width 
estimated from the 1st IMF component based on the 
subsequent IMF components. 

Inspired by the above observations, we propose to first 
identify the locations of artifact episodes and obtain the 
initial estimation of their widths based on the 1st IMF 
component (Observation II). We then iteratively “grow” the 
estimated widths based on subsequent IMF components 
(Observation III). In addition, by decomposing the ICP 
signal into IMFs, it now allows us to employ time domain 
filters to extract artifact data points from IMF components 
(Observation I). In particular, a robust 3σ filter is used. 

 
Figure 3 (a) Comparison between original ICP signal and its 1st IMF 
component. (b) Iterative estimation of the width of artifact episode. 

Robust Filtering 
A robust 3σ filter is employed to extract artifact data 

points from decomposed IMF components. In theory, the 3σ 
filter works very simply: any data point, whose value is 
outside of the 3σ region, is considered as an artifact. 
However, in practice, the actual value of standard deviation, 
σ, is always unknown. Thus, the challenge is: how to 
accurately estimate σ based on the collected data that is 
contaminated by artifacts? 

   Conventionally, the “sample standard deviation” is the 

most common estimation of σ, and it is formally defined as: 

σ 1
N 1 x μ

N

 

where {x1,...,xN} is collected time-series data and µsample 
refers to the “sample mean”. However, both sample mean 
and standard deviation are not robust against artifacts. As 
graphically demonstrated in Figure 4, uncontrolled bias can 
be introduced to the sample mean and standard deviation by 
the presence of artifacts.  

 
Figure 4 A graphical example to illustrate the robustness of mean 

absolute deviation (MAD) based estimation of σ, σMAD, in comparison 
with sample standard deviation, σsample. 

To ensure the robustness of the proposed method, we 
propose to estimate σ with the “Mean Absolute Deviation” 
(MAD). For a univariate time-series {x1, ..., xN}, MAD is the 
median of the absolute deviations from the data's median, 
and it is mathematically defined as: 

| |  
where medianj(xj) refers to the data median. Based on MAD, 
σ is estimated as: 

σMAD K MAD 
where K≈1.4826 if we assume the data is Gaussian. σMAD is 
a robust estimation of σ with 50% as break-down point, 
which means the bias of the estimation is bounded as far as 
the amount of artifacts is less than 50% of the overall data 
size [10]. 

 
Proposed Method 

Inspired by the observations from EMD-based signal 
decomposition, and making use of the robust 3σ filter, a 
novel method is proposed to effectively extract artifact 
episodes from ICP monitoring signals. The flow of the 
proposed method is graphically demonstrated in Figure 5. 

The proposed method is composed with 3 major steps. 
Step 1 decomposes the ICP monitoring signal into Intrinsic 
Mode Functions (IMFs) based on the Empirical Mode 
Decomposition (EMD). In Step 2, the proposed robust 3σ 
filter is applied to the 1st IMF component to separate artifact 
data points from the normal ones. This step not only 
effectively identifies the locations of artifact episodes but 
also provides an initial estimation of their widths. Step 3 
then aims to iteratively refine the width estimations based on 
the subsequent IMF component, {IMF2, ..., IMFk}. Take 
IMF2 as an example. As shown in Figure 3 (b), given the 
initial width estimation from IMF1, the robust 3σ filter is 
applied to IMF2 to detect artifact data points around the 
“neighbourhood” of the initial estimated width window. The 
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estimated width will then “grow” to cover the newly 

detected artifact “neighbours”. This process will repeat 

iteratively on subsequent IMF components until the 

estimated width stops “growing”. 

 

 
Figure 5 Proposed artifact detection method. 

B. Artifact Imputation 
After artifacts are detected from the ICP monitoring 

signal, the next question is: how should we deal with the 

detected artifacts? 

The most straightforward approach is to simply discard 

the detected artifact data points. However, this approach 

severely destroys the time information of the signal. In ICP 

monitoring, the time information is extremely crucial for 

clinical tasks, such as diagnosis of patients’ physiological 

status and understanding of patients’ treatment response. We 

propose to impute the detected artifact episodes based on the 

Auto-Regressive Moving Average (ARMA) model. 

ARMA model is an effective tool to understand and 

predict values of a stationary time-series signal. (Theoretical 

details of the ARMA model can be referred to [13].) 

Considering the entire time-series, the ICP monitoring signal 

is non-stationary. However, stationarity is still observed 

within small segments of the signal. According to our study, 

we found that the widths of artifact episodes are usually very 

small (on average, less than 10 mins/60 data points). 

Therefore, it is reasonable to assume stationarity, and 

ARMA is applicable to impute the values of detected artifact 

episodes. 

IV. RESULTS & DISCUSSION 

The proposed artifact removal method is empirically 

evaluated with the collected ICP monitoring signals of 59 

patients, who were admitted to the NICU of National 

Neuroscience Institute, Singapore, between January 2009 to 

December 2010. Basic statistics of the selected patients’ data 

are summarized in Table 1. The ICP levels of the selected 

patients are continuously monitored for more than 24 hours. 

Measured ICP levels were sampled and recorded every 10 

seconds with a bedside computer system. Artifact episodes 

in the collected ICP monitoring signal were manually 

annotated and verified by experts. The annotated artifact 

episodes are used as the ground truth for the performance 

evaluation.  

 
Statistics Readings 

Size of Samples 59 
Avg. Monitoring Length (Hr.) 203.5 
Avg.  No. of Artifact Episodes 25.9 
Total No. of Artifact Episodes 1532 

Table 1 Basic statistics of the selected patients’ data. 

The performance of the proposed artifact detection 

method is evaluated based on how well it identifies the 

locations of artifact episodes and how accurately it estimates 

their widths. 

For artifact episode location identification, on average, the 

proposed method achieves 100% precision and 73.6% recall. 

100% precision implies that no useful signal is misclassified 

as artifact by the proposed method. However, the recall of 

the proposed method is comparatively lower indicating that 

a number of artifact episodes are missed. As shown in Figure 

6, the misses are mainly caused by the masking effect of the 

“tall” artifacts, whose magnitudes are abnormally large. This 

limitation can be effectively addressed by repeating the 

proposed detection method for multiple iterations. As 

demonstrated in Figure 6, after performing the 2nd iteration, 

most of the artifact episodes have been. However, 

identifying artifact episodes with multiple iterations of the 

proposed method introduces higher computational 

overheads. To achieve the best trade-off between 

performance and computational cost, the optimum number 

of iterations needs to be determined. We will further 

investigate this in our future work.  

The overall detection performance of the proposed 

method is measured with the F score, where 

 

 2  

 

 
Figure 6 Performance comparison between 1st and 2nd iterations of the 
proposed artifact detection method. Artifact episodes detected in the 1st 
iteration are highlighted in solid red lines, and new artifact episodes 
detected in the 2nd iteration are highlighted in black dotted lines. 
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For the proposed detection method, F is calculated to be 
0.848, which indicates that the proposed method is effective 
in identifying artifacts episodes from ICP signals. 

For width estimation, the proposed method, on average, 
achieves 82% of accuracy. Moreover, we observe that our 
method tend to overestimate the width of artifact episodes. 
Thus, more fine-tuning is still required for the proposed 
method, and we will address it in our future work. 

After artifact episodes are detected, we propose to impute 
the artifact data points based on the ARMA model. As 
demonstrated in Figure 7, the ARMA model significantly 
outperforms the linear regression model, a commonly used 
imputation method, in preserving the data characteristics of 
the underlying signal. Figure 7 also graphically illustrates 
that, compared with the proposed method, low-pass filters 
are not effective solutions to remove artifacts from ICP 
monitoring signals. 

In this study, the AR and MA order of the ARMA model 
is set to 20, based on the partial auto-correlation study. 
Selecting the optimum order of the ARMA model can 
further improve the performance of artifact imputation. 
Thus, this issue will be further investigated in details in our 
future works. 

 
 

 
Figure 7 Performance comparison between the ARMA model, the 
linear regression model and a low-pass filter. The low-pass filter is 
implemented using Equiripple FIR filter with Passband = 0.015Hz, 

Stopband = 0.020Hz  and Attenuation = -60dB. 

V. CONCLUSION 
In this paper, we have proposed a novel solution to 

effectively remove artifacts from ICP monitoring signals. 
Artifact removal involves two main tasks: artifact detection 
and artifact imputation. 

To effectively detect artifact episodes from the ICP 
monitoring signal, we proposed to decompose the non-
stationary non-linear ICP signal into Intrinsic Mode 
Functions (IMFs) based on Empirical Mode Decomposition. 
Useful properties are observed in the decomposed IMF 
components. Inspired by the observed properties, we 
proposed an effective method to accurately identify the 
locations of artifact episodes and iteratively estimate their 
widths with a robust filter. Instead of classical statistical 
tools, parameters of the proposed robust filter are estimated 
using robust statistics, which ensures the performance of the 
proposed filter will not be unduly affected by artifacts. 

Finally, the detected artifact data points are imputed based 
on the ARMA model to preserve the characteristics of the 
underlying ICP signal. 

The effectiveness of the proposed artifact removal method 
is experimentally justified based on the ICP monitoring 
signals of 59 patients. However, one limitation of the 
proposed method is observed. In the presence of “tall” 
artifacts with abnormally large magnitudes, due to their 
masking effect, the proposed method may miss the relatively 
“shorter” artifacts. We have demonstrated that this limitation 
can be effectively addressed by repeating the proposed 
detection method for multiple iterations. Detailed solution 
for this limitation will be further investigated in our future 
work.  
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