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Abstract—Most existing neural fuzzy systems either overlook
the importance of feature analysis; or it is performed as a
separate phase prior to the design stage of the systems. This paper
proposes a novel neural fuzzy system, named Feature Analysis
Enhanced Pseudo Outer-Product Fuzzy Rule Identification System
(FAPOP), which integrates its design with feature analysis. The
objective is two-folds; namely, (1) to improve the interpretability
of the system by identifying features relevant to its computational
structure; and (2) to improve the accuracy of the system by
identifying features relevant to the application problem. The
proposed FAPOP model is subsequently employed in a series of
benchmark simulations to demonstrate its efficiency as a neural
fuzzy modeling system, and excellent performances have been
achieved.

Index Terms—Feature analysis, Pseudo-outer product (POP),
Categorical Learning Induced Partitioning (CLIP), Nakanishi
dataset, Mackey-Glass prediction.

I. INTRODUCTION

Existing neural fuzzy systems can be broadly classified into
two classes; namely, linguistic fuzzy models [1] [2], which
are focused on delivering a good level of interpretability to
the structures of the models, and precise fuzzy models [3] [4],
which are focused on achieving high accuracies in the mod-
eling tasks. While Mamdani models [5] form the main focus
in the former class; the latter class comprises mainly of the
Takagi-Sugeno-Kang models [6] [7]. In general, having a good
fuzzy rulebase interpretability and a high modeling accuracy
are two contradictory requirements in the design of a neural
fuzzy system [8].

With its success in data-mining applications, feature anal-
ysis techniques [9] are often performed either implicitly or
explicitly as a pre-processing phase prior to the design stage
of a neural fuzzy system. The main advantage is an im-
provement to the modeling accuracy through the removal of
redundant/derrogative features and the identification of relevant
features for the underlying application problem. Nevertheless,
the decoupled stages do not consider the close relationship
between feature analysis and system design [10], i.e., to
identify features that are important for the application problem
and are relevant to the output of the neural fuzzy system.

This paper presents the Feature Analysis Enhanced Pseudo-
Outer Product Fuzzy Rule Identification System (FAPOP), a
novel neural fuzzy system which integrates its design with

feature analysis. An initial fuzzy rulebase is obtained via Quek
and Zhou’s pseudo-outer product (POP) rule identification
algorithm [11]. Knowledge are then extracted simultaneously
from the initial rulebase and a single-pass of the training
data to incrementally update a relevance weight for each
input feature. All input features are relevant by default; while
irrelevant/redundant input features are marked by decreasing
relevance weights. Since knowledge from both the initial
rulebase and the training data are utilized to determine the
relevance weights, this allows FAPOP to identify features
that are important for both the system and the application.
The objective is to provide a regulated balance between the
two contradictory requirements; namely, (1) to improve the
interpretability of the system by identifying features relevant
to its computational structure; and (2) to improve the accuracy
of the system by identifying features relevant to the application
problem. Following that, irrelevant input features, together with
contradictory and/or identical rules, are removed to maintain
a compact structure in FAPOP.

The rest of the paper is organized as follows. The computa-
tional structure and the reasoning process of the FAPOP model
are described in Section II. The proposed rule identification
and feature selection methodologies are introduced in Section
III. Section IV evaluates the learning and generalization abil-
ities of FAPOP through a series of benchmark experimental
simulations. Lastly, Section V concludes the paper.

II. FAPOP: ARCHITECTURE AND REASONING PROCESS

The proposed FAPOP model is a five layers neural fuzzy
system as shown in Fig. 1. Layer 1 is the input variable nodes
IVi; layer 2 is the antecedent nodes Ai,ji ; layer 3 is the rule
nodes Rk; layer 4 is the consequent nodes Clm,m; and layer 5
is the output variable nodes OVm. In the FAPOP model, the in-
put vector is denoted as x = [x1, . . . , xI ]

T with corresponding
desired output vector denoted as d = [d1, . . . , dM ]T ; while the
computed output vector is denoted as y = [y1, . . . , yM ]T . Each
input variable node consists of Ji number of antecedent fuzzy
labels; while each output variable node consists of Lm number
of consequent fuzzy labels. Layer 3 of FAPOP represents the
K fuzzy rules in the system such that each node encodes a
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Fig. 1. Architecture of FAPOP.

fuzzy rule of the form given as in (1):

Rk : IF x1 is A(k)
1,j1

and . . . and xI is A(k)
I,jI

THEN y1 is C(k)
l1,1 and . . . and yM is C(k)

lM ,M (1)

where A(k)
i,ji

(resp. C(k)
lm,m) is the ji-th antecedent (resp. lm-th

consequent) node associated with the i-th input (resp. m-th
output) variable that is connected to the rule node Rk. The
tunable parameters of FAPOP are the centres and widths of the
fuzzy labels embedded in the antecedent and consequent nodes,
where each node defines a gaussian membership function
described as in (2):

µ(c,σ; x) = e−((x−c)2/σ2) (2)

such that c and σ are the centre and width of the function
respectively. Adaptation of the parameters is performed using
backpropagation [12].

The reasoning process of FAPOP is represented by the
forward solid arrows in Fig. 1 where the input vector x is
presented to the system at layer 1. The proposed system then
performs inference based on the input vector by propagating
the information through layers 2 to 4. Consequently, the
system produces a computed output vector y at layer 5. Each
corresponding output for an arbitrary node is denoted as fo
such that the reasoning process of FAPOP is discussed below:

Layer 1: The input node IVi directly passes on the input
value to the next layer such that its neural operation is
described as in (3):

foi = xi . (3)

Layer 2: The antecedent node Ai,ji performs similarity
matching of the input value with the corresponding fuzzy label
such that its neural operation can be described as in (4):

foi,ji = µi,ji(ci,ji ,σi,ji ; foi) (4)

where µi,ji(ci,ji ,σi,ji ; x) refers to the gaussian membership
function embedded in Ai,ji .

Layer 3: Each rule node Rk computes the overall degree
of similarity between the input vector and the antecedent part
of the k-th fuzzy rule such that its firing rate is computed as
in (5):

fok = min
i∈{1...I}

fo(k)
i,ji

. (5)

Layer 4: The consequent node Clm,m performs consequent
derivation for the fuzzy rules based on the information from
the input vector. Since Clm,m may serve as output to more
than one fuzzy rule, its cumulative neural operation can be
described as in (6):

folm,m = max
k∈{1...Klm,m}

fo(lm,m)
k (6)

where Klm,m is the total number of fuzzy rules in FAPOP that
shares the same consequent node Clm,m and fo(lm,m)

k is the
output of the k-th rule that shares Clm,m.

Layer 5: The output node OVm performs defuzzification
via the center of averaging method [13] to obtain a crisp output
value such that its neural operation can be described as in (7):

ym = fom =

∑
lm∈{1...Lm} folm,mclm,mσlm,m∑

lm∈{1...Lm} folm,mσlm,m
(7)
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where clm,m and σlm,m are the centre and width of the
gaussian function embedded in Clm,m respectively.

III. LEARNING MECHANISMS OF FAPOP
In the proposed FAPOP model, an initial fuzzy rulebase

is obtained via Quek and Zhou’s POP rule identification
algorithm [11]. A relevance weight for each input feature
is then incrementally determined using knowledge extracted
from both the initial fuzzy system and a single-pass of the
training data. The relevance weight of an input feature reflects
its role in describing the underlying application problem and
the output of the system. As stated before, all input features
are assumed relevant at the beginning. Input features with
consistently high relevance weights are selected; while input
features with decreasing relevance weights are regarded as re-
dundant and discarded. Subsequently, irrelevant input features,
together with contradictory and/or identical rules, are removed
to maintain a compact structure in the FAPOP model.

The learning mechanisms of FAPOP are discussed here as
follows. Details of the neural computations in the proposed
system are described in Section III.A.; Section III.B. reviews
the POP algorithm; Section III.C. introduces the feature analy-
sis technique in FAPOP; and Section III.D. illustrates the ideas
discussed using a case study.

A. Neural Computations in FAPOP
Neural computations in the proposed FAPOP model are bi-

directional, in the forward and backward sense as described
below:

1 Forward Operation: The forward operation of FAPOP co-
incides with its reasoning path as described in Section II.

2 Backward Operation: The backward operation of FAPOP is
represented by dotted arrows in Fig. 1, which is a mirrored
computation of the forward operation. Each corresponding
output for an arbitrary node is denoted as bo.

Layer 5: The output node OVm directly passes
on the output value to the next layer such that its neural
operation is described as in (8):

bom = dm . (8)

Layer 4: The consequent node Clm,m performs
similarity matching of the output value with the corre-
sponding fuzzy label such that its neural operation can be
described as in (9):

bolm,m = µlm,m(clm,m,σlm,m; bom) (9)

where µlm,m(clm,m,σlm,m; x) refers to the gaussian mem-
bership function embedded in Clm,m.

B. POP algorithm
The POP algorithm consists of two phases in its learning

process; namely, fuzzy partitioning and rule identification. In
this paper, fuzzy partitioning is performed using the Cate-
gorical Learning Induced Partitioning (CLIP) [14]; while a
description of the rule identification follows.

1IV

1,1A 2,1A 1,2A 2,2A

1R 2R

1,1C 1,2C

1OV

1,1,2w

2IV

3R 4R

1,3C
1,2,2w 1,3,2w mlk m

w ,,

Fig. 2. Illustration for POP rule identification algorithm.

For simplicity, assume an application problem with 2 inputs-
1 output as shown in Fig 2. Two fuzzy labels are determined
by the CLIP algorithm for each input space; while three
fuzzy labels are determined for the output space. The POP
algorithm considers all possible rules, such that four fuzzy
rules are initialized. The system is fully connected from the
rule layer to the consequent layer with weights wk,lm,m,
k = 1 . . . 4, lm = 1 . . . 3, m = 1. Fig 2 illustrates the rule
identification process for the rule node R2:

1 Initialization: Set wk,lm,m = 0.
2 Weight Update: Through a single-pass of the training data,

update the weights as follows:

wk,lm,m =
∑

N

fok · bolm,m

where N is the size of the training data.
3 Rule Formulation: Select the m-th consequent node for Rk

as one with the maximum weight given as follows:

C(k)
lm,m = Cl⋆m,m

where wk,l⋆m,m = maxlm wk,lm,m.

C. Feature Analysis in FAPOP

The forward-and-backward neural computations (as de-
scribed in Section III.A.) are defined to compute the instan-
taneous relevance weight of an input feature i when a data
pair [x, d] is presented to FAPOP. The instantaneous relevance
weight ω̂i is computed as in (10):

ω̂i = max
ji

[
min

k

(
fo(k)

i,ji
, bo(k)

lm,m

)]
(10)
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Fig. 3. Flowchart of the feature analysis process employed in FAPOP.

where fo(k)
i,ji

(resp. bo(k)
lm,m) is the computed output of the

antecedent node Ai,ji (resp. consequent node Clm,m) that
is connected to the rule node Rk. Knowledge is extracted
from the structure of each rule node Rk, consisting of its
antecedent and consequent parts, for the computation of the
instantaneous relevance weight ω̂i. Subsequently, ω̂i is given
by the maximum activations of its respective fuzzy labels. That
is, the instantaneous relevance weight ω̂i of an input feature i
represents the activation level of feature i by the current data
pair based on the knowledge encoded in FAPOP.

Feature analysis in FAPOP proceeds with incrementally up-
dating a relevance weight for each input feature. The relevance
weight ωi for an input feature i is computed as in (11):

ωi (0) = 1 ;
ωi (t + 1) = min [1, ωi (t)− ωi (t) · (ηd − 1) · (ω̂i (t)− h)]

(11)

where ηd < 1 is a natural decaying constant and h is the
harsh factor. The relevance weight of an input feature i is
initialized to unity, assuming a high level of relevance since
0 < ωi ≤ 1. Harsh factor h, 0 ≤ h ≤ 1, determines the
level of stringency in the feature selection process, i.e., for a
large value of h, only highly relevant features are selected;
while for a lower value of h, some redundant features might
be included in the selection. This is because when ω̂i (t) < h,
we have ωi(t+1) < ωi(t). Hence when h is a large value and
most instants of ω̂i fall below h, the resultant relevance weight
of input feature i will be decreasing over time. On the other
hand, when ω̂i (t) > h, we have ωi(t + 1) > ωi(t). Hence
when h is a small value and most instants of ω̂i are greater
than h, the resultant relevance weight of input feature i will
be increasing over time. Nevertheless, ωi will be cap at unity.

Fig. 3 shows a flowchart of the feature analysis process
employed in the proposed FAPOP model. With each incoming
training data pair [x, d], the instantaneous relevance weight
ω̂i of an input feature i is computed as the activation of the
input feature by this current data pair based on the knowledge
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Fig. 4. Updates of the relevance weights for input features x1–x4 in the
case study: A. For a single-pass of the training data; and B. For 10 passes of
the training data.

encoded in the system. FAPOP then proceeds with updating
the relevance weight ωi of an input feature i using (11). After
a single-pass of the training data, redundant features in the
proposed model are identified and removed from the system.
Redundant features are recognized by their decreasing rele-
vance weights. Subsequently, contradictory/inconsistent rules
with lower weightages are removed. An inconsistent rulebase
occurs when there exists two rules such that the antecedent
conditions are similar but the resultant consequences differ;
while the weightage of a fuzzy rule is defined as

∑
m wk,l⋆m,m.

Following that, the system deletes repeated rules, i.e. , rules
with similar antecedent and consequent segments. Finally,
some of the fuzzy labels might be “orphaned” when all fuzzy
rules associated with them have been deleted. The orphaned
fuzzy labels are also removed to ensure that the resultant
structure of FAPOP is compact.

D. Case Study
This section illustrates the proposed learning mechanisms in

the FAPOP model with a case study. The dataset is generated
by a nonlinear equation as described in (12):

y =
(
1 + x−2

1 + x−1.5
2

)2 (12)

where x1 and x2 are the two inputs in the system; while y is
the output. Following the problem described in [15], a total of
50 data pairs are generated for 0 ≤ x1, x2 ≤ 5. Two random
variables x3 and x4, in the range of [0, 5], are subsequently
added as dummy inputs. Hence, the application problem is a
4 inputs-1 output system, such that input features x3 and x4

are expected to be indifferent to the output.
A total of 5, 4, 7 and 5 fuzzy labels are identified by

the CLIP algorithm for the four input spaces respectively;
and 3 fuzzy labels are determined for the output space. That
means, 700 fuzzy rules have been initialized by the POP
algorithm such that the initial structure of FAPOP is given
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Fig. 5. Fuzzy clusters identified for inputs x1–x2 and output y in the case study; and part of the identified rulebase in FAPOP.

by the configuration 4-21-700-3-1. Following that, FAPOP
proceeds with the feature analysis process to identify relevant
input features to the system and the application. Fig. 4 shows
the updates for the relevance weights for the four inputs. After
a single-pass of the training data (see Fig. 4.A.), the decline
in the relevance weights for input features x3 and x4 are
much faster compared to those for x1 and x2, indicating that
they might be irrelevant. To emphasize the disparity in the
relevance weights between the relevant and irrelevant features,
the training data are cycled for ten epochs in this experiment
as shown in Fig. 4.B. From the figure, the relevance weights
of the redundant input features x3 and x4 approach zero with
the increase in the number of running epochs, while that of the
relevant input features x1 and x2 are maintained consistently
at a high level. In general, irrelevant/redundant input features
are marked by decreasing relevance weights, where the decline
can be emphasize with an increase in the number of running
epochs. Nevertheless, it should be noted that a large training
dataset will lead to an increase in the time complexity with an
increase in the number of running epochs. In this paper, the
number of running epochs for the experiments is capped at 10.

After the redundant features (x3 and x4) have been iden-
tified, they are removed from the FAPOP model. Inconsistent
rules of lower weightages, as well as identical rules, are also
removed to maintain a compact structure in FAPOP. Finally,
orphaned fuzzy labels are deleted from the system. The final
structure of FAPOP is given by the configuration 4-9-20-2-1,
i.e., there are 20 identified rules in the proposed model and one
orphaned fuzzy label in the output space is also deleted. As
seen, there is a significant reduction of 97% in the the number
of identified rules.

Fig. 5 illustrates the identified fuzzy clusters in FAPOP for
the input spaces x1 and x2, and that for the output space y.
Since the fuzzy clusters are highly ordered, clear semantic
meanings can be attached to the fuzzy clusters. A total of
20 fuzzy rules are identified by the FAPOP model, with six
rules corresponding to a low output value, and fourteen rules

corresponding to a high output value. Subsequently, the six
rules are listed in Fig. 5. One can easily verify that the derived
rulebase is consistent, with the identified fuzzy rules reflecting
the relationship between the inputs and the output of the
system, i.e., based on (12), for relatively high values of inputs
x1 and x2, the resultant output y of the system is low. The
reverse is also true for a high output value y.

IV. EXPERIMENTAL RESULTS

This section illustrates the effectiveness of the proposed
FAPOP model as a neural fuzzy modeling system by employ-
ing it in two benchmarking simulations; namely, (1) the three
sets of experiments in Nakanishi’s dataset [16] [17]; and (2)
the prediction of Mackey-Glass chaotic system [18].

A. Nakanishi Dataset
The learning and modeling abilities of the proposed FAPOP

model are evaluated using three sets of experiments; namely,
(a) a nonlinear system; (b) the human operation of a chemical
plant; and (c) the daily pricing of a stock in a stock market. The
datasets are extracted from published papers in [16] and [17].
Each of the three datasets is split into three groups A, B, and C
where A and B form the training dataset and C is the testing
data. The benchmark for comparisons are the accuracies on
the testing data (calculated as the mean squared error MSE)
and the correspondence between the computed output with the
testing data (calculated as the Pearson correlation coefficient
R). The experimental results of FAPOP are subsequently
benchmarked against the following models; namely, Hebb-R-
R [2]; POPFNN [19]; RSPOP [8]; five of the six reasoning
methods in [16] (Sugeno P&P-G, Sugeno P, Sugeno P-G,
Mamdani, and Turksen IVCRI); ANFIS [3]; EFuNN [20];
DENFIS [4]; and FITSK [21].

1) A Nonlinear System: The objective of this experiment is
to identify and model the underlying principles of a nonlinear
system. In the original dataset, there were four inputs x1–
x4 and one output y. Before the feature analysis process,
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TABLE II
CONSOLIDATED EXPERIMENTAL RESULTS FOR THE NAKANISHI DATASET.

Nonlinear System Chemical Plant Stock Prediction
Model MSE (Rank) R (Rank) MSE (Rank) R (Rank) MSE (Rank) R (Rank) Average Rank
Hebb-R-R 0.185 (1) 0.911 (2) 2.423×104 (2) 0.998 (2) 15.14 (1) 0.947 (1) 1.5
POPFNN 0.270 (3) 0.877 (3) 5.630×105 (8) 0.946 (9) 76.22 (10) 0.733 (10) 7.2
RSPOP 0.383 (7) 0.856 (4) 2.124×105 (5) 0.983 (7) 24.86 (2) 0.922 (2) 4.5
Sugeno P&P-G 0.345 (6) 0.828 (7) 2.897×105 (7) 0.973 (8) 94.58 (12) 0.706 (11) 8.5
Sugeno P 0.776 (12) 0.558 (12) 6.372×105 (9) 0.933 (12) 35.47 (4) 0.883 (4) 8.8
Sugeno P-G 0.467 (9) 0.845 (6) 1.931×106 (12) 0.990 (6) 168.9 (13) 0.700 (12) 9.7
Mamdani 0.862 (13) 0.490 (13) 6.580×105 (10) 0.937 (11) 40.84 (7) 0.865 (7) 10.2
Turksen IVCRI 0.706 (11) 0.609 (11) 2.581×105 (6) 0.993 (4) 93.02 (11) 0.661 (13) 9.3
ANFIS 0.286 (4) 0.853 (5) 2.968×106 (13) 0.780 (13) 38.06 (5) 0.875 (6) 7.7
EFuNN 0.566 (10) 0.720 (10) 7.247×105 (11) 0.946 (9) 72.54 (9) 0.756 (9) 9.7
DENFIS 0.411 (8) 0.805 (9) 5.240×104 (4) 0.995 (3) 69.82 (8) 0.810 (8) 6.7
FITSK 0.336 (5) 0.828 (7) 3.862×104 (3) 0.993 (4) 33.78 (3) 0.883 (4) 4.3
FAPOP 0.186 (2) 0.951 (1) 1.440×104 (1) 0.999 (1) 38.47 (6) 0.898 (3) 2.3

TABLE I
EXPERIMENTAL RESULTS OF FAPOP FOR THE NAKANISHI DATASET.

Nonlinear Chemical Stock
System Plant Prediction

# Rules before
feature analysis 108 81 17496

# Rules after
feature analysis 12 12 6

Rule reduction % 89 85 99
MSE 0.186 1.440×104 38.47
R 0.951 0.999 0.898

108 fuzzy rules are initialized in FAPOP; while FAPOP
identifies input feature x3 as redundant after feature analysis.
Subsequently, the application problem becomes a 3 inputs-1
output system. A total of twelve fuzzy rules are then identified
by FAPOP for this experiment (see Table I). Consolidated
experimental results on the benchmarking measures are given
in Table II.

2) Human Operation of a Chemical Plant: The proposed
FAPOP model is employed to model the human operation of
a chemical plant in this experiment. Although there were five
inputs x1–x5 and one output y in the original dataset, only
selected relevant input features, x1–x3 and x5, are used in
defining the rules. Subsequently, a total of twelve fuzzy rules
are extracted from the FAPOP model as shown in Table I. Con-
solidated experimental results on the benchmarking measures
are given in Table II.

3) Daily Pricing of a Stock in a Stock Market: Using
various statistics concerning a stock collected from a stock
market, the proposed FAPOP model is employed to perform
stock price prediction. Out of the original ten input features
x1–x10, two features, x7 and x9, are redundant and discarded
from the FAPOP model. A total of six fuzzy rules are then
identified by FAPOP, indicating a remarkable reduction of 99%
in the number of identified rules (see Table I). For comparison,

the consolidated experimental results on the benchmarking
measures are given in Table II.

4) Discussion: Table I shows the experimental results for
the proposed FAPOP model in the Nakanishi dataset. There
are significant reductions in the number of identified rules in
all the three experiments. By keeping the number of identified
rules low, this helps to improve the overall interpretability of
the system.

Table II shows the consolidated experimental results for
the Nakanishi dataset between FAPOP and the benchmarking
models. FAPOP outperforms all the benchmarking models in
the first two tasks by consistently ranking first in terms of
MSE and R. In the task of modeling a nonlinear system,
FAPOP achieves a MSE value of 0.186, similar to Hebb-R-
R. In addition, there is a slight improvement of 4.39% in
the R value compared to second place Hebb-R-R. For the
second task of modeling a chemical plant, the proposed FAPOP
model delivers an outstanding performance by achieving a
reduction of 40.6% in terms of calculated MSE and a slight
improvement of 0.001 in terms of correlation R compared to
the second position Hebb-R-R. For the final task of stock
prediction, the performance of FAPOP is comparable with
FITSK, Sugeno P and ANFIS. It should also be noted that
Hebb-R-R uses 20 fuzzy rules; while RSPOP uses 29 fuzzy
rules [2]. Comparatively, FAPOP uses only six rules in the
prediction task. This explains the slight compromise in the
MSE and R values achieved. On average, the proposed FAPOP
model achieves a ranking of 2.3 for all the three tasks, putting it
at second position. This is a significant improvement compared
to respective members in the family of pseudo outer-product-
based neural fuzzy systems, i.e., POPFNN with an average
ranking of 7.2, and RSPOP with an average ranking of 4.5. As
a further comparison, the training time of the three members
in the POP neural fuzzy systems are listed in Table III. As
seen, the time complexity of the proposed FAPOP model is
comparable with the first generation POPFNN model. This is
a direct consequence of the POP rule identification algorithm,
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TABLE III
TRAINING TIME(MS) OF MEMBERS OF THE POP NEURAL FUZZY SYSTEMS.

Nonlinear Chemical Stock
Model System Plant Prediction
POPFNN 46 485 1,082,866
RSPOP 188 202 184
FAPOP 62 468 1,012,500

where all possible combination of rules is considered, and
hence the size of the initial rulebase increases exponentially
with an increase in the number of input dimensions. This can
be seen in the stock prediction experiment where the initial
number of rules is 17496 in FAPOP (see Table II). As a
result, it is time consuming and memory dependent at the
beginning of the learning. On the other hand, RSPOP proposes
a new rule identification algorithm, where the initial identified
rulebase consists of only 50 rules prior to rule reduction [8].
This, subsequently, results in a significant saving in the time
complexity. In conclusion, one can reduce the time complexity
of the proposed FAPOP model by adopting alternative rule
identification algorithms [22] [14] which are tailored to the
numerical training data.

B. Prediction of Mackey-Glass Chaotic System
The learning and generalization abilities of the proposed

FAPOP model is evaluated by employing it in a benchmark
comparison involving the prediction of a chaotic system. The
chaotic system is generated by a delay differential equation as
described in (13):

∂x(t)
∂t

=
0.2x(t− τ)

1 + x10(t− τ) − 0.1x(t) (13)

which was first investigated by Mackey and Glass [18]. A
fourth-order Runge-Kutta method was applied to compute
the numerical approximation of the series with conditions as
follows: τ = 17 and initial condition x(0) = 1.2. Four past
values are used to predict the present value, where

input vector = [x(t− 24), x(t− 18), x(t− 12), x(t− 6)] ;
output vector = [x(t)] .

A total of 1000 data pairs are extracted from the interval
t ∈ [118, 1117]. The first 500 pairs are then used as training
set; while the remaining 500 pairs are used for testing. The
benchmark for comparisons are the accuracies on the testing
data (given as the root mean squared error RMSE) and
the interpretability of the systems (given as the number of
identified fuzzy rules). The experimental results of FAPOP
are subsequently benchmarked against the following models;
namely, FALCON-ART [1]; FITSK [21]; and EFuNN [20].

Table IV shows the performance comparison for the
Mackey-Glass chaotic system between the proposed FAPOP
model and the benchmarking models. FAPOP achieves a
RMSE value of 0.017, falling behind only the EFuNN model
in terms of accuracy achieved on the testing data. Nevertheless,
EFuNN uses 330% more rules compared to FAPOP (a jump

TABLE IV
CONSOLIDATED EXPERIMENTAL RESULTS FOR THE MACKEY-GLASS

SYSTEM.

Model RMSE # Rules
FALCON-ART 0.040 30

FITSK 0.034 16
EFuNN 0.010 86
FAPOP 0.017 20

from 20 to 86) in this prediction task, greatly decreasing the
interpretability of the system. On the average, the proposed
FAPOP is able to maintain a good balance between the
two contradictory requirements, i.e., delivering a good fuzzy
rulebase interpretability by identifying 20 fuzzy rules, and
achieving a high modeling accuracy of 0.017.

V. CONCLUSION

This paper presents a novel neural fuzzy system named
Feature Analysis Enhanced Pseudo-Outer Product Fuzzy Rule
Identification System (FAPOP). A key strength of FAPOP is its
feature analysis integrative design such that a regulated balance
is achieved between the two contradictory interpretability-
accuracy requirements in the design of a neural fuzzy system.
This is done via two channels; namely, (1) improve the
interpretability of the system by identifying features relevant
to its computational structure; and (2) improve the accuracy
of the system by identifying features relevant to the applica-
tion problem. Subsequently, the learning mechanisms in the
proposed FAPOP model are showcased through a case study
where the system is able to identify a compact and highly
interpretable rulebase by identifying relevant features to the
system and application. Finally, FAPOP is employed in a series
of benchmarking simulations to demonstrate its effectiveness
as a neural fuzzy modeling system, and excellent performances
have been achieved.
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