
  

  

Abstract— Although the future mean of intracranial pressure 
(ICP) is of critical concern of many clinicians for timely medical 
treatment, the problem of forecasting the future ICP mean has 
not been addressed yet. In this paper, we present a nonlinear 
autoregressive with exogenous input artificial neural network 
based mean forecast algorithm (ANNNARX-MFA) to predict the 
ICP mean of the future windows based on features extracted 
from past windows and segmented sub-windows. We compare 
its performance with nonlinear autoregressive artificial neural 
network algorithm (ANNNAR) without features extracted from 
window segmentation. Experimental results showed that, 
ANNNARX-MFA algorithm outperforms ANNNAR algorithm in 
prediction accuracy, because additional features extracted from 
finer segmented sub-windows help to catch the subtle changes of 
ICP trends. This verifies the effectiveness of decomposing the 
whole window into sub-windows to obtain features in making 
predictions on future windows. Based on the forecast of ICP 
mean, medical treatments can be planned in advance to control 
ICP elevation, in order to maximize recovery and optimize 
outcome. 
 

I. INTRODUCTION 
Intracranial pressure (ICP) monitoring has become the 

“gold standard” in most Neuro-Intensive Care Units (NICUs) 
nowadays, since direct correlations have been reported 
between elevated ICP and adverse outcome in the treatment 
of severe head injury [1]. Currently, medical interventions are 
delivered to patients only after clinicians notice sustained and 
significant ICP elevation [2]. Due to the urgency, clinicians 
usually have to simultaneously diagnose, make decisions, and 
conduct interventions. Thus, it is difficult and troublesome for 
clinicians to take timely interventions, especially in human 
resources and facilities limited hospitals. Besides, patients 
cannot wait for too long to receive medical diagnosis and 
following treatments. Therefore, it is critical to predict the 
future ICP mean to facilitate and enhance the ability of 
clinicians to take timely actions in the treatment of critically 
ill patients with severe head injury. 

Up to now, most efforts of prior research of ICP 
prediction were mainly directed in two directions: (1) 
identification of the precursors of ICP elevation [2-5]; (2) 
prediction of the exact ICP waveform [6-7]. The most 
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straightforward way is to recognize precursors to ICP 
elevation that can be extracted from continuous ICP signals 
[2]. In [2], twenty-four metrics in five categories (amplitude, 
time interval, pulse curvature, pulse slope, decay time 
constant) characterizing the ICP pulse morphology were 
shown to be critical in predicting ICP elevation. In [3], the 
frequency amplitudes of  the fundamental wave and 
harmonics obtained by Fourier transform analysis of the 
pulses were also shown to be significant precursors of ICP 
elevation. In recent years, discrete wavelet transform (DWT) 
based artificial neural network (ANN) algorithms were also 
applied to predict the exact ICP waveform, so as to identify 
the ICP trend [6-7]. However, satisfactory prediction results 
were reported for only up to 3 minutes. Although the future 
ICP mean is of critical concern to many clinicians, the 
problem of forecasting the ICP mean has not been addressed 
yet, to our best of knowledge. 
   In this paper, we present a nonlinear autoregressive with 
exogenous (external) input (NARX) artificial neural network 
based mean forecast algorithm (ANNNARX-MFA) to predict 
future ICP mean. The ANNNARX-MFA algorithm predicts the 
future ICP mean instead of the exact ICP values in [6-7], 
according to the features (past mean calculated from ICP 
windows and segmented sub-windows) extracted by window 
segmentation. Because of the non-linear feature of the 
neurophysiological signals, we construct the mean forecast 
algorithm (MFA) based on ANNNARX model, which has been 
proven to be accurate for modeling nonlinear systems and 
problems involving long term dependencies [8-9].  
   To verify the effectiveness of the features extracted from 
window segmentation in prediction, we chose the nonlinear 
autoregressive artificial neural network algorithm (ANNNAR) 
as baseline, which forecasts without the features extracted by 
window segmentation. Experimental results showed that 
ANNNARX-MFA algorithm consistently outperforms ANNNAR 
algorithm in prediction accuracy, for ICP mean prediction.   
   We also chose autoregressive moving average (ARMA) 
algorithm, which is a traditional model for forecasting time 
series, for performance comparison. Results showed that 
ANN algorithms are superior to ARMA algorithm in 
prediction accuracy for long-range ICP mean prediction.  

Based on the forecast of ICP mean, clinicians can identify 
the life-threatening trends early (e.g., ICP elevation), so that 
diagnosis and following treatments can be planned in advance, 
to prevent or attenuate secondary brain injury, so as to 
maximize recovery and optimize outcome. In this way, 
limited and expensive resources can also be utilized 
efficiently. 
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II. METHODOLOGY 

This study was an analysis of neurophysiological data 
collected in NICUs of National Neuroscience Institute - Tan 
Tock Seng Hospital, Singapore. Fifty-seven patients with 
severe traumatic brain injury (TBI) were admitted between 
2009 ~ 2010. All patients underwent continuous invasive 
monitoring of ICP, MAP, PbtO2 and brain temperature. 
However, four patients’ ICP records have substantial amount 
of missing data chunks, and therefore were not included in 
this study. The remaining 53 patients (42 male and 11 
female), who have been monitored for at least 24 consecutive 
hours, were included in our study. All medical records were 
anonymized and the study received ethics approval from the 
Institutional Review Board. 

ICP was continuously monitored using a fibre-optic 
intraparenchymal gauge (Codman and Shurtleff, Taynham, 
MA). All patients underwent multi-modality monitoring with 
continuous recording of clinical data on a Philips clinical 
information system. The continuously monitored 
neurophysiological readings were sampled and recorded at 
100 Hz. For all ICP records of patients studied, the ICP 
sample length has a mean of 92.9 hrs and standard deviation 
of 65.9 hrs. The mean of patients’ ICP varies from 4.3 ~ 73.7 
mmHg, while the standard deviation varies from 3.5 ~ 45.1 
mmHg. 

The nonlinear autoregressive with exogenous (external) 
input (NARX) artificial neural network based mean forecast 
algorithm (ANNNARX-MFA) predicts ICP mean of a future 
window, based on a features (e.g., mean of the past windows, 
and segmented sub-windows) extracted by window 
segmentation. 
   The flow chart of the ANNNARX-MFA algorithm is shown in 
Fig. 1. The whole process of the ANNNARX-MFA algorithm 
starts, when enough raw neurophysiological data of a patient 
has been accumulated. Because the raw data usually contains 
artifacts (“spikes”), our system detects and replaces the 
artifacts with imputed data [10], to mitigate the influence of 
the artifacts on the forecast accuracy. Due to patient 
movement, probe displacement, neurosurgical intervention or 
human errors, the raw data may also contain missing data. To 
remove the effects of missing data on the forecast accuracy, 
our analysis only includes continuous data, because simply 
removing missing values lead to discontinuities in the data.  

After artifact removal and missing data cleaning, ICP data 
is divided into many time windows, which is illustrated in 
Fig. 2. All windows have the equal size T (… |Tp(j)| = … |Tp(2)| 
= |Tp(1)|  = |Tf(1)| = |Tf(2)| = … = T). Tp(j) refers to the jth past 
window, while Tf(i) refers to the ith future window, with 
reference to current zero time point (t = 0). Each past window 
is further segmented into k finer sub-windows (S1, S2, … , Sk) 
from right to left (|Tp(j)| = |S1| + |S2| …+ |Sk| = T). However, 
different sub-window has different resolution (size/length). 
The number of sub-windows to be segmented (k) is decided 
first. The size of the first sub-window l1 is can be calculated 
by Eq. (1). The sizes of the rest of the sub-windows (l2, … ,  lk) 
can be calculated by Eq. (2).  
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This way of window segmentation gives lower resolution 

to the remote data and higher resolution to the close data 
inside a window. The artificial neural network adjusts the 
weights given to the features extracted from different 
sub-windows by training.    

Features of each past window and segmented sub-windows 
are then calculated. For instance, for the  jth past window Tp(j), 
the mean (µS1(j), µS2(j) ... µSk(j)), standard deviation (σS1(j), σS2(j) 
... σSk(j)) and the slope (mS1(j), mS2(j) ... mSk(j)) of the past 
sub-windows and the mean (µTp(j)), standard deviation (σTp(j)) 
and the slope (mTp(j)) of the whole window Tp(j)  are obtained. 
Since there are 3k+3 features of a past window, theoretically, 
there are a total of 23k+3-1( 3 3 3 3
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combinations of the features, which can be the input to ANN 
for predicting ICP mean.  

Nevertheless, both forecast results and correlation analysis 
showed that the slopes and variances extracted from the ICP 
windows and segmented sub-windows decrease the accuracy 
of ICP mean prediction. ICP mean prediction based on mean 
of the ICP windows and mean of the segmented sub-windows 
is more reliable. 
 

 
 
Figure 1: Flow chart of mean forecast algorithm 
 
   We choose the nonlinear autoregressive with exogenous 
(external) input (NARX) ANN model to construct our mean 
forecast algorithm (MFA), because MFA requires the features 
of segmented sub-windows as external inputs. A combination 
of the past features obtained above is chosen to be the input to 
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train the ANN.  During the training phase (open-loop process, 
i.e., the predicted output is not the feedback to the ANN), 
ANN adjusts its internal parameters (the weights of the 
neurons and biases) to learn the dynamic relationships 
between input and output, so as to minimize the differences 
between the actual values and predicted values of the output. 
During the prediction phase (closed loop process, i.e., the 
predicted output is the feedback to the ANN), a trained ANN 
uses these learned dynamic characteristics and relationships 
to predict the mean (µTf(1)) of the first future window Tf(1), 
based on a combination of previous mean of the adjacent q 
past windows (Tp(q) , … , Tp(2), Tp(1)) and their sub-windows. 
The predicted mean of the first future window (e.g., mean 
(µTf(1))) will be used as the feedback to predict its value in the 
following iterations, as illustrated by the right feedback loop 
in Fig. 1. 
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Figure 2: ICP window segmentation and feature extraction 
 

Then, ANNNARX-MFA algorithm moves time reference 
point forward to the next future window (t = t + T) and 
updates the identifiers of all the windows. As time window of 
T has been passed, ANNNARX-MFA algorithm adds in new 
filtered and cleaned data of immediate past window and 
proceeds to next round of processing, as illustrated by the left 
iteration loop in Fig. 1. The whole process iterates until no 
more new data is available, when the patient is either 
discharged or relocated for neurosurgery. 

Based on the forecast of ICP mean, clinicians can identify 
when the life-threatening trends (such as ICP elevation) will 
occur, so that they can prepare for diagnosis and following 
treatments and allocate necessary manpower and equipments 
in advance, to prevent or attenuate secondary brain injury, so 
as to maximize recovery and optimize outcome. They may 
also choose the suitable medical treatment option based on 
the ICP forecast from time to time. In this way, not only 
clinicians save the trouble of simultaneously diagnose, make 
decisions, and conduct interventions, due to urgency, but also 
hospitals can allocate necessary manpower and equipments in 
advance, so as to efficiently utilize such limited and 
expensive resources. 

III. RESULTS AND DISCUSSION 

A. Relationship Analysis of Features 
   The mean (µ) represents the average value of ICP for a 
given period. The standard deviation (σ) represents the 
stability/variability of ICP for a given period. The slope (m) 
represents the steepness of ICP elevation for a given period.  
   In our correlation analysis, no apparent direct 
inter-relationships exist among mean, standard deviation and 
slope. Besides, no direct relationship can be found between 
standard deviation of the window and standard deviations of 
the segmented sub-windows, or between slope of the window 
and slopes of the segmented sub-windows. The detailed 
results are not shown in order to be concise.  
   Fig. 3 is the scatter plot of ICP mean of the window (µT ) 
and the mean of the sub-windows of a sample patients’ ICP 
record obtained with window size of 15 min. Throughout our 
study, we chose to segment a past window into four 
sub-windows (i.e., k = 4). More sub-windows will be tested in 
future work. Fig. 3 shows strong positive linear relationship 
between mean of the window and means of the sub-windows, 
which implies the means of the sub-windows might be useful 
for predicting the mean of the future window. 
 

 
 
Fig. 3: The relationship between ICP mean of the window (µT ) and the 
mean of the sub-windows (µS1, µS2, µS3, µS4) (T=15 min) 
 

B. Forecast Performance Comparison 
We evaluated the forecast performance by coefficient of 

determination (R2), mean square error (MSE), and relative 
absolute error (RAE). In our experiments, the performance of 
ICP standard deviation prediction and ICP slope prediction is 
unsatisfactory, because no strong relationship can be found 
between the standard deviation of the window and the 
standard deviation of the sub-windows, or between the slope 
of the window and the slope of the sub-windows. Besides, the 
performance of ICP mean prediction based on features of 
standard deviations and/or slopes is also unsatisfactory, 
because no apparent direct inter-relationships exist among 
mean, standard deviation and slope. The detailed results are 
not shown in order to be concise. 
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Table I: ICP mean forecast performance comparison for coefficient of 
determination (R2), mean square error (MSE), and relative absolute 
error (RAE) (results are shown in µ ± σ format) 
Metric Model T=15 min T=30 min T=45 min

R2 
 

ANNNARX-MFA 0.93 ± 0.05 0.81 ± 0.11 0.56 ± 0.25 
ANNNAR 0.88 ± 0.07 0.73 ± 0.15 0.43 ± 0.32 
ARMA 0.76 ± 0.10 0.61 ± 0.16 0.28 ± 0.25 

MSE 
ANNNARX-MFA 0.88 ± 0.58 3.26 ± 1.96 8.12 ± 4.72 

ANNNAR 1.73 ± 0.99 4.79 ± 2.63 10.25 ± 5.95 
ARMA 4.46 ± 1.89 7.28 ± 3.19 12.91 ± 8.96 

RAE 
ANNNARX-MFA 9% ± 3% 24% ± 11% 49% ± 23% 

ANNNAR 15% ± 5% 33% ± 16% 69% ± 27% 
ARMA 32% ± 8% 49% ± 15% 85% ± 13% 

 
   Table I shows the ICP mean forecast performance 
comparison. Experimental results showed that 
ANNNARX-MFA algorithm consistently outperforms the 
ANNNAR algorithm in performance comparison of coefficient 
of determination, mean square error, and relative absolute 
error, because additional feature (mean) obtained from finer 
sub-windows help to catch the subtle changes of ICP trends. 
This verifies the effectiveness of decomposing the whole 
window into sub-windows to obtain features in making 
predictions on future windows. Experimental results also 
showed that, for various window sizes, ANN algorithms are 
superior to traditional ARMA algorithm for in prediction 
accuracy, which implies that ANN algorithms are better than 
ARMA algorithm in learning long term dynamic 
relationships. 

 
 
Figure 4: ICP Mean Prediction Accuracy vs. Forecast Range T 
 
   Fig. 4 shows the comparison of ICP mean prediction 
relative absolute error (RAE) for different forecast range T. 
Results indicates that the ICP mean prediction accuracy of all 
three algorithms degrades as forecast range increases from 10 
mins to 45 mins, this is because the longer the prediction 
horizon is, the more difficult it is to catch the ICP trends.  
Results also showed that features extracted from window 
segmentation consistently improve the prediction accuracy 
for various forecast range. This demonstrates the ability of 
our proposed algorithm to predict ICP mean for both short 
time horizon and medium time horizon. The predicted results 
for short time horizon are useful for clinicians to identify the 

optimal medical treatment and the concentration for certain 
medicine, whereas those for long time horizon are useful for 
clinicians to prepare for critical interventions and surgeries. 

IV. CONCLUSION 
We presented an artificial neural network based mean 

forecast algorithm (ANNNARX-MFA) for forecasting ICP 
mean, based on features extracted by window segmentation. 
Results also show that, for ICP mean prediction, our proposed 
algorithm outperforms the autoregressive moving average 
model in prediction accuracy. The ANNNARX-MFA algorithm 
may be extended to forecast of the mean of other 
neurophysiological signals, based their own features, or based 
on the correlations among different neurophysiological 
signals. Based on the ICP forecast, clinicians not only may 
choose the suitable medical treatment option, but also can 
prepare for treatment and required resources to save the 
trouble and maximize the outcome. 

 

ACKNOWLEDGEMENT 
The authors would like to acknowledge the research 

support from the staff in Neuro-Intensive Care Units of 
National Neuroscience Institute - Tan Tock Seng Hospital 
Singapore for collecting medical data. 

REFERENCES 
[1] A. Marmarou, R. L. Anderson, J. D. Ward, S. C. Choi, H. F. Young, H. 

M. Eisenberg, M. A. Foulkes, L. F. Marshall, and J. A. Jane, "Impact of 
ICP instability and hypotension on outcome in patients with severe 
head trauma," J. Neurosurg. Pediatr., vol. 75, 1991. 

[2] H. Xiao, X. Peng, S. Asgari, P. Vespa, and M. Bergsneider, 
"Forecasting ICP elevation based on prescient changes of intracranial 
pressure waveform morphology," IEEE Trans. Biomed. Eng., vol. 57, 
no. 5, pp. 1070-1078, 2010. 

[3] C. F. Contant, C. S. Robertson, J. Crouch, S. P. Gopinath, R. K. 
Narayan, and R. G. Grossman, "Intracranial pressure waveform indices 
in transient and refractory intracranial hypertension," J. Neurosci. 
Methods, vol. 57, no. 1, pp. 15-25, 1995. 

[4] J. McNames, C. Crespo, J. Bassale, M. Aboy, M. Ellenby, S. Lai, and 
B. Goldstein, "Sensitive precursors to acute episodes of intracranial 
hypertension," in Proc.  BSI'02, Como, Italy, pp. 303–306, 2002. 

[5] J. Fan, C. Kirkness, P. Vicini, R. Burr, and P. Mitchell, "Intracranial 
pressure waveform morphology and intracranial adaptive capacity," 
Amer. J. Crit. Care, vol. 17, no. 6, pp. 545-554, 2008. 

[6] M. Swiercz, Z. Mariak, J. Krejza, J. Lewko, and P. Szydlik, 
"Intracranial pressure processing with artificial neural networks: 
prediction of ICP trends," Acta Neurochir., vol. 142, no. 4, pp. 531-542, 
2000. 

[7] F. C. Tsui, C. C. Li, M. Sun, and R. J. Sclabassi, "An adaptive neural 
network in wavelet space for time-series prediction," in Proc.  ISCAS 
'96, Atlanta, GA , USA, vol. 3, pp. 601-604 vol.3, 1996. 

[8] H. T. Siegelmann, B. G. Horne, and C. L. Giles, "Computational 
capabilities of recurrent NARX neural networks," IEEE Trans. Syst., 
Man, Cybern. B, Cybern., vol. 27, no. 2, pp. 208-215, 1997. 

[9] P. J. G. Lisboa, "A review of evidence of health benefit from artificial 
neural networks in medical intervention," Neural Networks, vol. 15, no. 
1, pp. 11-39, 2002. 

[10] M. Feng, L. Y. Loy, F. Zhang, and C. Guan, "Artifact removal from 
intracranial pressure monitoring signals: a robust solution with signal 
decomposition," accepted for publication in Proc.  IEEE EMBC'11, 
Boston, MA, USA, 2011. 

10 15 20 25 30 35 40 45
0 %

20 %

40 %

60 %

80 %

100 %

Forecast Range T(mins)

R
el

at
iv

e 
A

bs
ol

ut
e 

E
rr

or
 (R

A
E

)

 

 

ARMA
ANNNAR

ANNNARX-MFA

7114


