
  

  

Abstract— The Filter Bank Common Spatial Pattern 

(FBCSP) algorithm constructs and selects subject-specific 

discriminative CSP features from a filter bank of spatial-

temporal filters in a motor imagery brain-computer interface 

(MI-BCI). However, information from other types of features 

could be extracted and combined with CSP features to enhance 

the classification performance. Hence this paper proposes a 

Filter Bank Feature Combination (FBFC) approach and 

investigates the use of CSP and Phase Lock Value (PLV) 

features, where the latter measures the phase synchronization 

between the EEG electrodes. The performance of the FBFC 

using CSP and PLV features is evaluated on four-class motor 

imageries from the publicly available BCI Competition IV 

Dataset IIa. The experimental results showed that the proposed 

FBFC using CSP and PLV features yielded a significant 

improvement in cross-validation accuracies on the training data 

(p=0.008) and better session-to-session transfer accuracies to 

the evaluation data compared to the use of CSP features using 

the FBCSP algorithm. This motivates the research of FBFC 

using a battery of other features that could possibly benefit 

EEG-based BCIs and multi-modal BCI systems. 

I. INTRODUCTION 
n the use of an electroencephalogram (EEG)-based Motor 
Imagery Brain-Computer Interface (MI-BCI), the subject 

performs the imagination of movement from the first-person 
perspective without actually executing it [1]. As illustrated in 
the human homunculus [2], different body parts have a 
spatially ordered layout in the primary cortex. Hence, the 
imagination of different body part movements such as the 
hands, feet or tongue induces spatial changes in the EEG.  

To discern these spatial changes in the EEG to the types of 
motor imagery action, various signal processing and machine 
learning algorithms have been proposed. Such methods 
extract useful information from the EEG as feature vectors, 
for example, band power estimates [3], autoregressive (AR) 
models [4], Phase Lock Value (PLV) [5] and Common 
Spatial Pattern (CSP) [6]. The PLV feature quantifies the 
phase synchronization between the EEG electrodes, and 
results suggest that it contains useful information for 
discerning the types of motor imagery action [7]. The CSP 
algorithm computes spatial filters that maximize the variance 
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between two conditions such as left-hand and right-hand 
motor imagery. However, as the effectiveness of the CSP 
algorithm depends on subject-specific temporal filtering 
parameters, the Filter Bank Common Spatial Pattern 
(FBCSP) algorithm was proposed to address this issue [8]. 
The FBCSP algorithm autonomously performs the selection 
of key temporal-spatial discriminative CSP features that are 
specific to a subject. This algorithm yielded the best 
classification performance relative to the other submissions 
in the four-class motor imagery data from the BCI 
Competition IV [9] Dataset IIa [10]. 

Several feature combination approaches have been 
explored to improve the performance of MI-BCI in the 
literature. In [11], the gamma band power estimates feature 
were combined with the slow cortical potentials (SCP) 
feature to yield better performance than the use of only the 
SCP feature. In [12], [13], the Autoregressive (AR) feature, 
CSP feature and movement related potential (MRP) feature 
were combined using various strategies and yielded 
improved performance compared to the use of the individual 
features. In [5], [14], the PLV feature and the band power 
estimates feature were combined and also yielded improved 
performance compared to the use of the individual features. 
Thus the feature combination approach enhances the MI-BCI 
classification performance.  

However, the FBCSP algorithm employs the filter bank 
approach to extract only CSP features. Hence, this paper 
proposes a Filter Bank Feature Combination (FBFC) 
approach and investigates the use of the CSP features and the 
PLV features. The FBFC approach employs a four-stage 
process: First, band-pass filtering using a filter bank to 
extract frequency components of the EEG; Second, feature 
extraction to extract different types of EEG features; Third, 
feature combination to select the most informative features 
from each type of feature using a mutual information 
criterion and to perform feature transformation; Finally, 
classification is performed on the transformed feature 
vectors. The performance of the proposed FBFC employing 
the CSP features and the PLV features is investigated and 
compared with the FBCSP algorithm employing only the 
CSP feature, on the four-class single trial motor imagery data 
from the publicly available BCI Competition IV dataset IIa 
[10]. 

II. FILTER BANK COMMON SPATIAL PATTERN (FBCSP) 
The FBCSP algorithm [8] comprises four stages that 
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perform an autonomous selection of subject-specific 
temporal-spatial discriminative EEG characteristics for two-
class MI-BCI, shown in Fig. 1. 
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Fig. 1: Architecture of the Filter Bank Common Spatial Pattern (FBCSP) 
algorithm for two-class motor imagery EEG data. MIBIF4 and NBPW 
represent the Mutual Information Best Individual Feature and the Naïve 
Bayes Parzen Window classifier respectively.  

 

A. Band-pass filtering 

The first stage employs 9 band-pass filters that decompose 
the EEG into its respective frequency components from 4-
8Hz, 8-12Hz, …, 36-40Hz. Various configurations of the 
filter bank are as effective, but these band-pass frequency 
ranges are employed as they cover the range of 4-40Hz and 
encompasses the alpha/mu and beta bands. These frequency 
bands have been shown to exhibit Event-Related 
Desynchronization / Synchronization  (ERD/ERS) effects 
during motor imagery [13], [15], [16]. 

B. Spatial filtering and feature extraction 

The second stage performs spatial filtering using the CSP 
algorithm [6] by applying a linear transformation on the EEG 
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projection matrix for the bth band-pass filter; c is the number 
of channels; τ is the number of EEG time samples per 
channel; and T denotes the transpose operator.  

The CSP features from ,b i
Z  are then given by 
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W% represents the first m and the last m 
columns of which maximize the differences in the variances 
between 2 classes of motor imagery action; diag(·) returns 
the diagonal elements of a square matrix; tr[·] returns the 
sum of the diagonal elements in the square matrix.  

Hence, the FBCSP feature vector for the i
th trial is 

represented as 
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The FBCSP feature vectors from the training data are given 
as 
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denotes 
the CSP feature vector from the ith trial in the training data;   
i = 1,…,nt; nt denotes the total number of trials in the training 
data. 

C. Mutual information- based feature selection 

The third stage performs feature selection of the extracted 
features using the Mutual Information-based Best Individual 
Features (MIBIF) algorithm [17] on the training data. This 
algorithm selects the best k features that results in the highest 
estimate of mutual information with the class labels. The 
corresponding CSP features which come in pairs with the 
selected k features are also selected. Based on the study in 
[8], k = 4 is used.  

Denoting the set of features and the true class labels from 
the training data,  1 2 9*2, ,...,T T T

m
È ˘= =Î ˚F f f f V , where 

1
t

nT

q

¥Œf °  is the q
th column vector of V , the mutual 

information between feature 
q

f with the class label class 
ω={1,2} is given by 
 ( ) ( ) ( ); |

q q
I H Hw w w= -f f  (5) 

where ( )H w  and ( )|
q

H w f denotes the entropy and 

conditional entropy respectively. The details on the 
computation of these two functions are covered in [17].  

After performing feature selection on V , the training data 
with selected CSP features is denoted as csp

n d¥ŒX ° where d 
ranges from 4 to 8. Hence, the FBCSP feature vector for the 
i
th trial, after feature selection is performed,  is represented as 
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D. Classification 

The fourth stage performs classification using the Naïve 
Bayes Parzen Window (NBPW) Classifier [17] and the 
classification rule for two-class motor imagery is given as 
 ( )csp,

1,2
ˆ arg max |

j j
y p

w
w

=
= x

%
, (7) 

where ˆ
j

y  denotes the predicted label of the j
th evaluation 

trial csp, j
x
%

; ( )csp,|
j

p w x
%

denotes the posterior probability of 

the class ω={1,2}. 

III. PHASE LOCK VALUE (PLV) FEATURE EXTRACTION 
The Phase Lock Value (PLV) is a measure of the 

synchronization in phase between two time signals [5], [14]. 
It ranges from 0 to 1 where 0 represents no phase 
synchronization and 1 represents perfect phase 
synchronization. The PLV feature is computed as follows: 

After band-pass filtering, a common average reference 
(CAR) spatial filter [18] is applied on the EEG electrodes., 
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the Hilbert transform of the EEG signal of the l
th EEG 

channel  from the bth band-pass filter ,b l
e  is computed  
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where PV denotes the Cauchy principal value. 
The instantaneous phase is then computed as follows. 
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The PLV between two signals at two channels denoted as 
channel 1 and channel 2 is given as 
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where t represents the current time sample and τ represents 
the total time samples. The PLV is averaged over the time 
samples in each single trial. Hence the PLV feature vector 
for the ith trial is represented as 
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; nf = c×(c-1)/2 represents the number of 
PLV features over all channel pairs per frequency band; and 
c is the number of channels. 

Similarly, feature selection using the MIBIF algorithm is 
performed on the extracted PLV features. Hence, the PLV 
feature vector for the i

th trial, after feature selection is 
performed,  is represented as 
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IV. PROPOSED FILTER BANK FEATURE COMBINATION (FBFC) 
The proposed Filter Bank Feature Combination (FBFC) 

approach combines the CSP features and the PLV features. It 
employs a four-stage process to: first, band-pass filter the 
EEG using a Filter Bank; second, extract CSP and PLV 
features; third, perform feature combination using feature 
selection and feature transformation; and finally classify the 
transformed feature vector as shown in Fig. 2. 

A. Filter Bank and Feature Extraction 

The EEG data is first band-pass filtered into nine frequency 
components. After band-pass filtering, CSP features and 
PLV features are extracted from the frequency components 
as described in Section II and Section III. 

B. Feature Combination 

After feature extraction, feature selection is performed on 
each type of the extracted features in the training data. The 
MIBIF algorithm selects the best k features from each type 
of features that results in the highest estimate of mutual 
information with the class labels. Based on the results in [8],  
k = 4 is used for the selection of CSP features . k = 4 is also 
arbitrarily chosen for the selection of PLV features in this 
study.  
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Fig. 2: Architecture of the Filter Bank Feature Combination (FBFC) 
approach to combine information from different types of EEG features. In 
this study, CSP features and PLV features are combined for two-class 
motor imagery EEG data. MIBIF4, FLD and NBPW represent the Mutual 
Information Best Individual Feature, the Fisher Linear Discriminant and the 
Naïve Bayes Parzen Window classifier respectively. For multi-class motor 
imagery, the one-versus-rest (OVR) approach is employed, where 
classifiers that discriminate one class against the other classes are 
constructed. The predicted motor imagery action depends on the maximum 
posterior probability output from the component classifiers. 

 

Hence, the concatenated feature vector for the i
th trial is 

represented as 
 csp, plv, 1, 2, ( ),, , , ,
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where d ranges from 4 to 8 in this paper, as explained in 
Section II.C.  

Feature transformation is performed on the concatenated 
feature vector to reduce the feature dimension. The FBFC 
employs the Fisher Linear Discriminant (FLD) [19] on the 
concatenated feature vector 

i
x
%

 to form a one-dimensional 
feature vector for the ith trial, 
 fld

T

i i
g = x w

%
, (14) 

where ( )1
fld

d k¥ +Œw ° is the projection vector; and wfld 
maximizes the fisher criterion, a ratio of between-class to 
within-class variance. 

C. Classification and One-Versus-Rest (OVR) approach 

The FBFC employs the NBPW classifier to classify the 
transformed feature vector of the jth evaluation trial. 
 ( )

1,2
ˆ arg max |

j j
y p g

w
w

=
= , (15) 

In multi-class MI-BCI, the FBFC adopts the One-Versus-
Rest (OVR) approach, where classifiers for each class of 
motor imagery versus all the other classes are constructed.  

For a four-class MI-BCI, four OVR classifiers are 
required. Hence the classification rule of the NBPW 
classifier is thus extended from equation (15) to 
 ( )OVR ,

1,2,3,4
ˆ arg max |

j j
y p g w

w
w

=
= , (16) 

where ( )OVR ,|
j

p g ww  is the probability of classifying the jth 

evaluation trial between the motor imagery class ω and class 
ω’ = {1, 2, 3, 4}\ ω; \ denotes the set theoretic difference 
operation; and  ,j

g w  represents the transformed feature 
vector for the ωth

 OVR classifier. 
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V. EXPERIMENTAL RESULTS 

The FBFC approach was evaluated on the four-class 

single-trial motor imagery data from the BCI Competition IV 

dataset IIa [10], where one training session and one 

evaluation session of EEG data from nine subjects are 

provided. Each session comprised of 288 single trials with an 

equal distribution of left hand, right hand, foot and tongue 

motor imagery. Fig. 3 shows how each trial of motor imagery 

is conducted. At the start of each trial, a fixation cross is 

displayed on the computer screen for 2s. Subsequently, a 

visual cue instructs the subject to perform left-hand, right-

hand, foot or tongue motor imagery for 4s, followed by a 

break period of variable length before the next trial. To train 

the algorithm, the segment of 0.5s to 2.5s of EEG data after 

the onset of the visual cue was used. More details of the 

protocol are available in [10]. 
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Fig. 3: The experiment protocol for a single trial of motor imagery in the 

four-class motor imagery data from the BCI Competition IV Dataset IIa. To 

train the various algorithms under study, the time segment 

train_time_segment was used. The performance of the algorithms were 

evaluated on the entire segment of the single trial EEG data in 

test_time_segment using sliding time windows of length 

train_time_segment 
  

All 22 channels of EEG data were used to extract CSP 

features. The choice of m for the CSP algorithm in equation 

(2) was set to 2. This is because a greater choice of m did not 

significantly improve classification accuracy [6].  

Only 10 out of 22 channels of EEG data, as shown in Fig. 

4, were used to extract PLV features. This is to reduce the 

amount of processing required to extract the features. If all 

22 channels of EEG data were used instead and there would 

be c×(c-1)/2 = 231 features per frequency band, making that 

a total of 231×9 = 2079 features instead.  
 

 
Fig. 4: PLV features were extracted from the 10 EEG channels which have 

been shaded in this electrode map. 
 

 

 

 

A. Performance Measure 
The competition performance measure used was the 

maximum kappa value κ, to be consistent with the 

performance measure employed during the BCI Competition 

IV. The kappa value is computed from the BIOSIG toolbox 

http://biosig.sourceforge.net/.  
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where p0 denotes the classification accuracy and pe is the 

chance expected agreement. Classification accuracy by 

chance and perfect classification would have a kappa value 

of 0 and 1 respectively [4]. The algorithm was evaluated on 

the entire single-trial EEG from the onset of the fixation 

cross using a sliding window of 2s.  

In this study, only the data from the same subject is used 

to evaluate the performance of the algorithm. This is carried 

out in two parts. In the first part, 10 runs of 10-fold (10×10-

fold) cross-validation is performed on training data. In each 

run, the EEG data extracted for all the 288 trials are 

randomly split into 10 equal portions, of which 9 portions 

are used as training data and the remaining portion as 

validation data. The maximum kappa value over 10-folds is 

noted. This process is then repeated for 10 runs by 

randomizing the manner in which the 288 trials are divided 

into 10 portions. The cross-validation result of the subject is 

then computed from the averaged kappa value of all 10 runs. 

In the second part, a session-to-session transfer from the 

training data to the independent evaluation data is 

performed. The algorithm uses  the EEG data from the first 

training session for training. The results of evaluating the 

algorithm on the EEG data from the second evaluation 

session are then presented.  

B. Classification Results 
The 10×10-fold cross-validations results on the training 

data are shown in terms of mean validation kappa value in 

Table I. The FBFC approach that employs both CSP features 

and PLV features outperforms the FBCSP algorithm that 

employs the CSP features only and the PLV algorithm that 

employs the PLV features only. Statistical analysis using the 

paired t-test between the FBFC and the FBCSP algorithm 

showed that the former performs relatively better than the 

other (p-value = 0.008).  

The session-to-session transfer performance of the FBFC 

approach on the evaluation data in terms of kappa values is 

shown in Table II. The results of the 2nd and 3rd placed 

submissions in the BCI Competition IV for this dataset are 

also listed, and details of their methods can be found in [9]. 

Although not statistically significant, the FBFC approach 

also outperforms the FBCSP algorithm in averaged kappa 

value over all nine subjects.  
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TABLE I 
KAPPA VALUE RESULTS FROM 10×10-FOLD CROSS-VALIDATIONS ON THE 

TRAINING DATA OF THE BCI COMPETITION DATASET IIA USING THE PROPOSED 
FILTER BANK FEATURE COMBINATION (FBFC), USING FILTER BANK COMMON 
SPATIAL PATTERN (FBCSP) AND PHASE LOCK VALUE (PLV). CLASSIFICATION 

ACCURACY BY CHANCE AND PERFECT CLASSIFICATION WOULD HAVE A 
KAPPA VALUE OF 0 AND 1 RESPECTIVELY 

  10×10  
SUBJECT FBFC FBCSP PLV 

1 0.79 0.77 0.43 
2 0.51 0.48 0.25 
3 0.86 0.83 0.43 
4 0.48 0.48 0.25 
5 0.62 0.60 0.13 
6 0.35 0.35 0.16 
7 0.86 0.86 0.21 
8 0.83 0.81 0.38 
9 0.80 0.79 0.42 

AVG 0.68 0.66 0.30 
 
 

TABLE II 
SESSION-TO-SESSION TRANSFER PERFORMANCE IN TERMS OF KAPPA VALUE 

ON THE EVALUATION DATA OF THE BCI COMPETITION IV DATASET IIA, USING 
THE PROPOSED FBFC AND FBCSP APPROACHES. RESULTS FROM THE 2ND AND 

3RD PLACED SUBMISSION HAVE ALSO BEEN INCLUDED. 
 EVALUATION 

SUBJECT FBFC FBCSP 2ND 3RD 
1 0.79 0.80 0.69 0.38 
2 0.41 0.40 0.34 0.18 
3 0.81 0.76 0.71 0.48 
4 0.53 0.52 0.44 0.33 
5 0.35 0.37 0.16 0.07 
6 0.30 0.26 0.21 0.14 
7 0.76 0.79 0.66 0.29 
8 0.70 0.69 0.73 0.49 
9 0.69 0.63 0.69 0.44 

AVG 0.59 0.58 0.52 0.31 

VI. DISCUSSION AND CONCLUSION 
Feature combination is an extensive area of research with 

applications in different areas [20]. Experimental results in 
studies [5], [11], [12], [14], [21] showed that feature 
combination yielded improved classification performance for 
Brain-Computer Interfaces (BCIs). Thus this paper proposed 
a Filter Bank Feature Combination (FBFC) approach to 
investigate the use of the Common Spatial Pattern (CSP) 
feature and the Phase Lock Value (PLV) features. The 
performance of the proposed FBFC is compared with the 
Filter Bank Common Spatial Pattern (FBCSP) algorithm that 
used only CSP features. The results on the four-class motor 
imagery data from the BCI Competition IV Dataset IIa 
showed that the proposed FBFC approach that combines the 
CSP and the PLV features outperformed the FBCSP 
algorithm that used only the CSP features in terms of cross-
validation accuracy on the training data and session-to-
session transfer on the evaluation data. 

Since there are a variety of features that can be extracted 
from brain activity, the challenge is to investigate the 
effectiveness of using the proposed FBFC approach using 
various types of features. This could be applied in hybrid 
BCIs [22] or multi-modal BCIs where simultaneous 
measurements of brain activity such as Near Infra-red 

Spectroscopy (NIRS) and EEG are available. This could also 
be applied when features are extracted from other 
physiological signals such as the ECG [23]concurrently 
measured with EEG in hybrid BCIs. Hence, the results from 
the proposed FBFC motivates further investigation to use 
other types of features as well as other types of feature 
combination techniques to improve the classification 
performance. 
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