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Abstract— Studies had shown that Motor Imagery-based
Brain Computer Interface (MI-based BCI) system can be used
as a therapeutic tool such as for stroke rehabilitation, but had
shown that not all subjects could perform MI well. Studies had
also shown that MI and passive movement (PM) could similarly
activate the motor system. Although the idea of calibrating
MI-based BCI system from PM data is promising, there is
an inherent difference between features extracted from MI and
PM. Therefore, there is a need for online learning to alleviate the
difference and improve the performance. Hence, in this study
we propose an online batch mode semi-supervised learning with
KL distance weighting to update the model trained from the
calibration session by using unlabeled data from the online test
session. In this study, the Filter Bank Common Spatial Pattern
(FBCSP) algorithm is used to compute the most discriminative
features of the EEG data in the calibration session and is
updated iteratively on each band after a batch of online
data is available for performing semi-supervised learning. The
performance of the proposed method was compared with offline
FBCSP, and results showed that the proposed method yielded
slightly better results in comparison with offline FBCSP. The
results also showed that the use of the model trained from
PM for online session-to-session transfer compared to the use
of the calibration model trained from MI yielded slightly
better performance. The results suggest that using PM, due
to its better performance and ease of recording is feasible and
performance can be improved by using the proposed method to
perform online semi-supervised learning while subjects perform
MI.

I. INTRODUCTION

Brain-computer interface (BCI) can be used as a commu-

nication and/or control system which enables the users to

interact with external devices by their brain signals without

any peripheral muscle activities [1]. BCI systems can also

be served as a therapeutic tool to help people who suffer

from motor impairments [2]. Motor impairment after stroke

is the most important reason of permanent disability [3].

During the last decade several methods were developed to

support stroke rehabilitation [3], [4], [5], [6], [7]: Active

movement training (AMT), Electromyographic biofeedback,
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Robotics, and mental practice with Motor Imagery. Motor

Imagery (MI) can be defined as a dynamic state during

which the representation of a specific motor action is inter-

nally reactivated within working memory without any actual

motor movement [3]. In other words, the motor system

can be activated similarly during MI and actual movement

[8]; therefore, MI would be useful approach for subjects

with different levels of disabilities. However, using MI for

rehabilitation has some problems: it is hard for the therapist

to evaluate the performance of the MI performed by subject

and also the subject himself has no feedback about his

own performance. BCI system can help to overcome these

problems [5]. Several previous studies used MI-based BCI

for stroke rehabilitation [8], [9], [10]. MI based BCI can

measure the brain activity and translate the imagination of

the movements into commands. Moreover, the subject can be

informed about his performance by means of a feedback and

can try to enhance his performance relative to the received

feedback.

Among different proposed methods for EEG preprocessing

which is necessary for BCI systems, Common spatial pattern

(CSP) algorithm [11] serves as an effective tool. CSP is

used for discriminating the two classes of EEG data by

maximizing the variance of one class while minimizing the

variance of the other class. It has shown the performance

of the spatial filters constructed by CSP algorithm depended

on their operational frequency bands. Filter Bank Common

Spatial Pattern (FBCSP) algorithm [12], [13] is one of the

proposed methods which can automatically select the key

temporal spatial discriminative EEG characteristics. Hence,

due to the subject-specific frequency band selection by

FBCSP higher performance is achieved in comparison with

normal CSP. However, in session-to-session transfer and

especially in online systems achieving a good performance

is not possible by only selecting specific frequency band for

each subject. The subject’s brain signals may be changed

from calibration session into test session. Therefore, there

is a difference between calibration model and the online

session model, which can be caused by several factors such

as: subject’s fatigue, getting involved in different tasks, or en-

vironmental interferences. In other words, the inherent non-

stationarity behavior of the EEG signal can easily deteriorate

the performance of the session-to-session transfer and also

online EEG-based BCI.

It has shown in [14] that FBCSP can be applied for online

adaptive and semi-supervised learning. In their study a Naı̈ve

Bayesian Parzen Window (NBPW) classifier is trained on the

EEG data of the calibration session and used it to classify
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the EEG data of the online test session. However, in their

online and semi-supervised method only the NBPW classifier

is updated. Here, in this study an online batch mode semi-

supervised learning with KL distance weighting is applied to

update FBCSP. The performance of our method is applied

on the EEG data recorded from 12 healthy subjects. This

paper is organized as follows: Section II describes the dataset

and methodology of this study. Section III contains the

experimental results, and finally section IV concludes the

paper.

II. DATASET AND METHODS

A. Dataset

In this work, the EEG data recorded from the 12 healthy

subjects are used. Two of the subjects were left handed and

therefore perform motor imagery and passive movement by

their left hand while the rest perform by their right hand. All

the subjects were asked for ethics approval and informed

consent. EEG signal were recorded by using the Nuamps

EEG acquisition hardware (http://www.neuroscan.com) with

unipolar Ag/AgCl electrodes channels, digitally sampled at

250 Hz with a resolution of 22 bits for voltage ranges of

130 mV. EEG recordings from all 27 channels are bandpass

filtered from 0.05 to 40 Hz by the acquisition hardware. All

subjects were asked to minimize any physical movement and

eye blinking throughout the EEG recording process.

The EEG data from each subject were collected on two

separate days. On the first day four non feedback sessions

were recorded. The first two sessions collected EEG from a

subject while performing motor imagery of the chosen hand

and background rest condition. During these two sessions,

the subjects were instructed to perform kinaesthetic motor

imagery of their chosen hand right after a visual cues

displayed on the computer screen in each trial. During the

background rest condition, the subjects were instructed to

perform mental counting. This instruction was given to define

the background rest condition to the subject. The next two

sessions collected EEG data from the subject while passive

movement of the chosen hand was performed using the

haptic knob robot [6] and background rest condition. During

these two sessions, the subjects were supposed to be relax

while the movement of the chosen hand was performed

using the haptic knob robot [6]. During the background rest

condition subjects performed mental counting similar to the

first two sessions.

Each session lasted about for approximately 16 minutes

that comprised of 40 trials of either motor imagery or passive

movement, and 40 trials of background rest condition. Each

trial comprised a preparatory segment of 2s, the presentation

of the visual cue for 4s, and a rest segment of at least 6s. Each

trial lasted approximately 12s, and a break period of at least

2 minutes was given after each session of EEG recording. To

calibrate the subject-specific model from performing motor

imagery (passive movement), the first (last) two sessions

were used.

On the second day, four sessions of EEG data were

collected with feedback from the subjects while performing

Fig. 1: Architecture of online batch mode semi-supervised learning
method based on Filter Bank Common Spatial Pattern (FBCSP)
algorithm.

motor imagery of the chosen hand and background rest

condition. In the first two sessions of the second day the

BCI system was calibrated by MI calibration session data,

and in the next two sessions the BCI was calibrated by

PM calibration session. Each session again lasted about for

approximately 16 minutes that comprised of 40 trials of

motor imagery and 40 trials of background rest condition.

B. Filter Bank Common Spatial Pattern (FBCSP)

In this study, we use Filter Bank Common Spatial Pattern

(FBCSP) algorithm [12], [14] FBCSP can effectively select

the subject specific frequency band for the CSP. It has four

progressive stages of EEG measurements processing [13]:

• Multiple frequency band pass filtering: A total of 9

Chebyshev Type II band-pass filters are used, namely,

4-8 Hz, 8-12 Hz, ... , 36-40 Hz.

• Spatial filtering: The CSP algorithm is applied to spa-

tially filter the signal. The CSP features are computed

for each band-pass frequency range.

• Features selection: Four best features are selected

among all 36 features by using the Mutual Information-

based Best Individual Feature (MIBIF) algorithm.

• Classification: SVM classification algorithm is em-

ployed to model and classify the selected CSP features.

More details about the FBCSP algorithm can be found in

[12], [13].

C. Batch mode updating of FBCSP

online learning for MI-based BCI system, the subject may

instruct to perform specific motor imagery action; this means

the labels of the online test session are known. However, in

real BCI applications it is more preferable that the subject

be free to perform either types of motor imagery action.

In such later cases, the labels would be unknown, since

the subject is not given any instructions to perform specific

motor imagery action. Semi-supervised learning is a type of

adaptive learning deals with these cases where both labeled

and unlabeled data are available [15]. In this study, we

have labeled passive movement data from offline calibration

session to train the classifier; the newly recorded online

test session data will be used in batches to update FBCSP

iteratively, which means that in each iteration the training

data set, CSP feature vectors of training data, and the labels
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of each batch of trials from the test data are updated. The

online batch mode semi-supervised algorithm, illustrated in

Fig. 1, is described in the following:

• Step 1: Use train data to train FBCSP and estimate the

labels of the newly recorded batch of test data. Since

it is online system these estimated labels shall be kept

for accuracy estimation.

• Step 2: For kth iteration (k=1:K):

Add the newly recorded batch of test data with esti-

mated labels to the train data. Re-train FBCSP to derive

the new features, and re-estimate the labels of the newly

recorded test data.

• Step 3: Update the train model by adding the newly

recorded test data with the estimated labels after Kth

iteration.

• Step 4: Go to Step 1

According to our simulations and also similar to some

other literature [16], the number of iterations were fixed to

K=3. Due to the total number of test trials we planned to

record and the speed of the online system we choose 10

trials in each batch.

Various semi-supervised methods had proposed previously

[16], [17]. They used Expectation Maximization (EM) algo-

rithm iteratively, and the train data is augmented with the

predicted labels of the current evaluation data. In [14] they

use some confidence level to avoid adding all trials, they

just augment the train data by those trials which match the

probabilistic model captured by NBPW. Also, in [18] they

used adaptive feature extraction and assign the variability

coefficient manually. Here in this study, we update the CSP

of each band iteratively. This can be done by increasing the

number of trials. Therefore, the covariance of each class in

each band is updated as follows:

Σb,(c) = (1− α)Σtr
b,(c) + αΣts

b,(c), (1)

where Σtr
b,(c) represents the covariance matrix of class c in

bth band, and tr and ts denotes the covariance of train and

test data, respectively. The weighting parameter α is defined

α = n
N+n

, where N is the total number of trials of passive

movement calibration data and n is the total number of

recorded trials from test data till now. This idea is similar to

updating CSP in Composite Common Spatial Pattern (CCSP)

[19]. In CCSP the CSP is updated by using the data from

other subjects. Here, the CSP on each band is updated using

the newly recorded data from the test session.

In this paper, we propose online batch mode semi-

supervised learning with KL distance weighting which has

a structure explained above but assigns some extra weights

to the incoming trials from the test data:

Σb,(c) = (1− α)Σtr
b,(c) +

1

KLb,(c)
αΣts

b,(c), (2)

KLb,(c) =0.5{log(
detΣtr

b,(c)

detΣts
b,(c)

)+

trace((Σtr
b,(c))

−1Σts
b,(c))−D},

(3)
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Fig. 2: The accuracies of motor imagery detection (with feedback)
calibrated by passive movement using offline (offline FBCSP),
online batch mode semi-supervised (online BMFBCSP), and online
batch mode semi-supervised method with KL distance weighting
(online BMFBCSP (KL)).

where KLb,(c) is a Kullback-Leibler (KL) [20] distance

shows the difference between probability distribution of the

train and incoming trials from test data up to now, D is

the dimension of the covariance matrix and det represents

determinant of a matrix.

III. RESULTS AND DISCUSSION

This section evaluates the performance of the proposed

method so called online batch mode semi-supervised learning

with KL distance weighting in comparison with offline

method for MI-based BCI (with feedback) calibrated by

passive movement data. The proposed method is applied on

the data set with 12 healthy subjects described in section

II-A.

Fig. 2 shows the accuracies of the PM to MI transfer

in three different experiments: 1) offline FBCSP, 2) online

batch mode semi-supervised method (BMFBCSP) in which

the train model is updated iteratively by adding the new

batch of recorded test data, and 3) online BMFBCSP with

KL distance weighting which adds the weighted new batch

of recorded test data to update the train model iteratively.

As can be seen, the average accuracy over 12 subjects is

increased for both BMFBCSP (63.94%) and BMFBCSP with

KL distance weighting (65.91%) in comparison with offline

FBCSP (63.19%). The results of using BMFBCSP with KL

distance weighting also indicate that for 9 out of 12 subjects

we get better accuracy in comparing to offline analysis. In

offline analysis there is no usage of current test session.

This suggests that adaptation in our problem is helpful to

alleviate the difference between the calibration session and

the test session. As an example subject hj who have a

random performance in offline analysis, shows about 20%

improvement by using online adaptation.

Among the 12 subjects, five subjects (i.e., hh, kk, ks, s,

zy) had some prior experiments in operating MI-based BCI
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Fig. 3: The accuracies of motor imagery (with feedback) detection
using passive movement (PMcs) or motor imagery (MIcs) for
calibration using online batch mode semi-supervised method with
KL weighting.

while the rest were BCI-naı̈ve subjects. As expected, the

average accuracies of the BCI-naı̈ve subjects for all three

experiments are around 6% less than the average accuracies

of the subjects with prior BCI experiences. The 10x10 cross

validation accuracies of detecting passive movement/ motor

imagery from the background rest condition are calculated

and was also previously reported in [21]. Those subjects

with accuracies above 80 are considered as the best subjects

(i.e., hj, jh, kk, pl, s, zy). The average accuracy using

BMFBCSP with KL distance weighting (70.15%) over these

best subjects increased about 5% in comparing to the offline

FBCSP (65.97%).

For better evaluation of the proposed online semi-

supervised method (BMFBCSP) with KL distance weighting,

it is also applied for MI detection with feedback calibrated

by MI calibration session and compared with the results

calibrated by PM calibration session (Fig. 3). As shown,

using the proposed method for online MI detection calibrated

by PM has slightly better performance than calibrated by MI.

Moreover, the performance of 7 out of 12 subjects was better

when calibration is performed by PM in online MI detection.

For the rest, the drops could be still because of the difference

between MI and PM calibration sessions.

IV. CONCLUSION

Motor imagery-based BCI systems are applied in dif-

ferent applications. However there is a common challenge

which affects their performances. It is not possible for all

the subjects either disabled or healthy to perform motor

imagery correctly. One of the feasible proposed methods

to overcome this challenge is to calibrate the system with

passive movement data. This study indicated that the MI-

based BCI system calibrated with PM can be used for online

MI detection with feedback. The results showed that on

average the performance of the MI-based BCI system (with

feedback) calibrated by PM data in online system is slightly

better than the one calibrated with MI in both offline and

online systems. The results may improve more by using

some advanced adaptation methods to overcome the differ-

ence between calibration sessions of MI and PM. However,

the results are promising enough to suggest applying the

proposed method for online MI detection in therapeutic or

non-therapeutic applications.
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