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Abstract. In Brain-Computer Interface (BCI) research, subject and
session specific training data is usually used to ensure satisfying clas-
sification results. In this paper, we show that neural responses to di↵er-
ent speaking tasks recorded with functional Near Infrared spectroscopy
(fNIRS) are consistent enough across speakers to robustly classify speak-
ing modes with models trained exclusively on other subjects. Our study
thereby suggests that future fNIRS-based BCIs can be designed without
time-consuming training, which, besides being cumbersome, might be
impossible for users with disabilities. Accuracies of 71% and 61% were
achieved in distinguishing segments containing overt speech and silent
speech from segments in which subjects were not speaking, without using
any of the subject’s data for training. To rule out artifact contamination,
we filtered the data rigorously.
To the best of our knowledge, there are no previous studies showing the
zero training capability of fNIRS based BCIs.
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1 Introduction

1.1 Motivation

A Brain-Computer Interface (BCI) is a communication channel between a user
and a machine. Typical BCI applications target users with disabilities for whom
standard input mechanisms are not feasible, due to motor limitations caused by
brain stem stroke, cancer or amyotrophic lateral sclerosis, to name a few exam-
ples.
Functional Near Infrared Spectroscopy (fNIRS) provides robust measurement of
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hemodynamic responses in the brain, which are related to neural activity. It is
less a↵ected by artifacts caused by movements of the subjects than the de-facto
standard modality in BCI, namely electroencephalography (EEG). Compared
to functional magnetic resonance imaging (fMRI), which is based on the same
hemodynamic e↵ects, fNIRS is far cheaper and more portable. Even though
fNIRS is a relatively new brain imaging modality, its feasibility for BCI has
been shown in a number of papers [2, 4].
Traditionally, BCIs rely on motor imagery for control, requiring the users to
imagine movement of certain parts of their body. Naito et al. [11] first showed
the usage of speech related activations, in the form of singing, with a very simple
fNIRS sensor. In a very recent study [6], we showed that overt as well as imag-
ined speech is a very reliable and promising paradigm for fNIRS-based human-
machine interaction.
As brain signals are non-stationary and user-specific, i.e. they vary significantly
over time and, even more so, between users, BCIs usually rely on training in-
tervals from the same session to calibrate the system. Especially in applications
for motion impaired users, a training procedure is cumbersome and reduces the
time of actual interaction with the system. Recent advances in EEG-based BCI
have shown that the usage of data from other subjects and sessions can reduce
the time needed to calibrate the system [7, 10] without compromising the system
performance. With large numbers of sessions available for each subject, calibra-
tion time can completely be rendered obsolete [8].
In this study, we show that by using fNIRS data from other subjects, we can
robustly distinguish between di↵erent speaking modes without any calibration
data of the current user. Consequently, we do not require multiple sessions per
user, but rely on only on a very limited dataset of 5 subjects in total. Fur-
thermore, our strict filtering assures that hemodynamic responses are used for
classification while all artifacts are removed. The results achieved in this setup
indicate the huge potential of fNIRS for BCIs, which are immediately usable
without calibration time.
For this study, we investigated the following speaking modes in classification
tasks: Normal audible speech (AudSpeech), silently uttered speech, for which
the subjects moved their articulatory muscles as if speaking but not producing
any sounds (SilSpeech), and speech imagery (ImgSpeech), for which the subjects
had to to imagine themselves of speaking, including imagining to move their
articulatory muscles.

1.2 Functional Near Infrared Spectroscopy

fNIRS measures the changes in oxy-hemoglobin (HbO) and deoxy-hemoglobin
(HbR), which are triggered by changes in blood volume due to neural activity
in the brain’s cortical areas. Using light-sources and detector-optodes, which are
fixated to the subjects’ heads, these hemodynamic responses can be measured.
Light in the near infrared range (620 - 1000 nm) disperses through biological
tissue, such as scalp, skull and cortical areas of the brain, but is absorbed by
hemoglobin. The modified Beer-Lambert law [12] can be applied to transfer raw
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optical densities (�OD) into changes in HbO and HbR, denoted as �HbO and
�HbR, respectively:

�HbO =
�OD

b · l · ↵HbO
�HbR =

�OD

b · l · ↵HbR
(1)

with source-detector distance l, photon path length b and absorption coe�cients
↵HbO and ↵HbR for HbO and HbR.
A typical hemodynamic response triggered by cortical activity increases on stim-
ulus onset for HbO and decreases for HbR. After the end of the activation, the
levels are expected to return to baseline.

2 Experiment

2.1 Setup

To record fNIRS data, we used a Dynot232 system by NIRX Medical Technolo-
gies equipped with 32 optodes, sampling at 1.81 Hz. All optodes were used as
sources and detectors simultaneously. We used infrared wavelengths of 760 and
830 nm in this study. For every source-detector pair, the system outputs raw
optical densities. We limited these to pairs with distances ranging from 2.5 to
4.5 cm, resulting in 252 channels of raw optical densities.
To measure neural activity in the relevant areas, four optodes were placed on
Broca’s area, 10 on Wernicke’s area, both on the left hemisphere. The prefrontal
cortex was covered with 12 optodes and six optodes were placed on the lower
left motor cortex. Exact optode positions were registered with an ANT Visor
infrared camera system1 and plotted on a brain surface image using the NIRS-
SPM software [13]. Figure 1 illustrates exact optode positions in our experiment.

(a) (b)

Fig. 1. (a) Optode positions frontal view. (b) Optode positions left lateral view. Cre-
ated with [13].

1 http://www.ant-neuro.com/products/visor/
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2.2 Data Acquisition

Five male subjects participated in this study. All of them were right-handed and
had a mean age of 27.6 years. Subjects had the 32 NIRS-optodes fixated to their
heads by a helmet. Ten sentences in English from the broadcast-news domain
were used for the experiment. Only subject 1’s mother tongue was English, but
all subjects spoke English fluently.
In the experiment, subjects produced utterances in the three modes Aud, Sil
and Img, where each utterance was separated by pauses. Sentences were prompted
by displaying them on a screen placed 50cm away from the subjects. Trials are
labeled according to the respective modes, i.e. AudSpeech, SilSpeech, ImgSpeech

and AudPause, SilPause, ImgPause. In every mode, each sentence was repeated
three times, resulting in a total of 30 trials per mode and per subject. Every ut-
terance of a sentence and every subsequent pause are denoted as separate trials.
Two subjects terminated the recordings prematurely resulting in fewer than 30
trials per mode. See Table 1 for full corpus characteristics.
The experimental design is described in more detail in our previous analysis [6].

Table 1. Corpus characteristics

Subject-ID 1 2 3 4 5

Mother tongue English German Sinhala German Farsi
AudSpeech trials 13 30 30 30 24
AudPause trials 13 30 30 30 24
SilSpeech trials 18 30 30 30 18
SilPause trials 18 30 30 30 18
ImgSpeech trials 18 30 30 30 18
ImgPause trials 18 30 30 30 18

Total recording time (minutes) 20.6 37.5 37.5 37.5 25.2

3 Methods

3.1 Signal Preprocessing

The HomER package2 was used to transfer the 252 channels of raw optical
densities into �HbO and �HbR values. After linear detrending the channels,
trials were extracted based on the experiment time information. Each trial was
assigned a class label, which correspond to the Speech or Pause categories.
Cui et al. [5] showed that NIRS channels containing artifacts can be identified
using the correlation between HbO and HbR. Usually, HbO and HbR should
be strongly negatively correlated, but motion induced artifacts lead to positive

2 http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm
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correlations, as both values will spike when the optodes are shifted or are lifted o↵
the scalp. To clean the data from artifacts, all channels which were not negatively
correlated (r > �0.3) for every subject were removed from the dataset. This way,
the initial 252 channels were reduced to 60 channels that do not contain artifacts
for any of the subjects. Almost all channels on the forehead are removed through
this procedure, as they are most vulnerable to movement induced artifacts.

3.2 Feature Extraction

Following Leamy et al. [9], we assume an idealized hemodynamic response for
feature extraction. A rise in HbO is expected during speech activity and levels
should return to baseline for the subsequent Pause trials (and vice-versa for
HbR). To make use of this observation, the mean µ of samples 9 to 15 (corre-
sponding to roughly 4 seconds) is subtracted from the mean of the first 7 samples
(⇠ 4 seconds) in every trial t for �HbO and �HbR for every channel i.

f�HbO
i,t = µ(�HbOi

t,1:7)� µ(�HbOi
t,9:15) (2)

f�HbR
i,t = µ(�HbRi

t,1:7)� µ(�HbRi
t,9:15) (3)

Given this feature extraction, we extract 120 features in total per trial. The fea-
tures were normalized to zero mean and unit standard deviation (z-normalization).

3.3 Feature Selection

Ang et al. [1] presented the Mutual Information based Best Individual Feature
(MIBIF) algorithm, a feature selection approach based on a high relevance cri-
terion to reduce the feature space dimensionality. It has proven highly e↵ective
for BCI data [1] and is orders of magnitude faster than more complex Mutual In-
formation based approaches which try to incorporate redundancy measures [3].
The Mutual Information I(X;Y ) can be understood as the amount of informa-
tion shared by two random variables X and Y . Therefore, a feature containing
highly relevant information should have a high Mutual Information with the
class labels. MIBIF selects the k features with highest Mutual Information with
the class labels. Assuming that the training data is representative of the test
data, such selected features should increase the classification accuracy.
We set k = 5 after studying the distributions of Mutual Information of features
with the class labels. See Figure 2 for the distribution of the Mutual Information
when selecting features on four subjects for classification on the remaining fifth.
Features are sorted decreasingly by their Mutual Information. It can be easily
seen that the largest portion of the Mutual Information is explained by the first
k = 5 features while the remaining 115 contribute only very little information.
Selected features were very consistent across the di↵erent folds, but varied in
between tasks.
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Fig. 2. Mutual Information over number of features for each subject when selecting
features on the remaining four subjects for the AudSpeech versus AudPause task. The
dotted line indicates the five selected features.

3.4 Classification and Evaluation

To evaluate our system, we applied a leave-one-speaker-out cross validation. A
Linear Discriminant Analysis (LDA) classifier was trained on the 5-dimensional
feature set S, determined with MIBIF. The LDA was trained on 4 subjects and
tested on the remaining subject in a round-robin manner. Presented results were
then averaged over all 5 rounds.
In a first experiment, all three Speech modes were combined and tested against
all three combined Pause modes to discriminate speech activity from inactiv-
ity. Subsequently, every mode was classified from its respective Pause trials in
binary classification experiments. Additionally, the three Speech modes were
discriminated from each other.

4 Results

All classification results are presented in Figure 3. Di↵erentiating between com-
bined Speech (build from AudSpeech, SilSpeech, and ImgSpeech) and combined
Pause worked reasonably well with an average accuracy of 58%. Subsequently,
every Speech mode was tested individually against its respective Pause mode.
Audible speech yielded best results with 71% average classification accuracy.
This was expected, as neural activity from speech production, speech planning
and auditory activity should be observed. Results for silent speech (SilSpeech)
are slightly lower (61%), which is explicable by the lack of auditory activity in
the fNIRS signals. Discriminating ImgSpeech from ImgPause, when only speech
planning activity is present, did not yield results better than chance level. This
can be explained by the large variability in speech imagery across subjects, as
their might be a lack of a consistent form of imagined speech, even though
all speakers were instructed to imagine reading the sentences out loud. Our
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Fig. 3. Classification results for binary classification experiments Speech against Pause
in all modes and between Speech of di↵erent speaking modes. Each color represents
one subject. Dotted line stands for naive classification accuracies.

dataset is small and contains subjects from very di↵erent backgrounds (4 dif-
ferent mother tongues), thus the absence of a uniform activation pattern across
subjects for speech imagery, for which neither muscle control, nor speech pro-
duction or acoustic feedback are present is not too surprising.
Di↵erentiating between the di↵erent speaking modes worked reliably as well.
Classification between AudSpeech and SilSpeech worked best with 68% accuracy.
We were able to distinguish between AudSpeech and ImgSpeech with 65% accu-
racy and our setup achieved 55% for SilSpeech versus ImgSpeech.
In addition to the classification accuracies, we conducted t-tests to reject the
null hypothesis that classification results were equal to naive classification. All
experiments, except for ImgSpeech versus ImgPause, were significantly (p < 0.05)
better than naive classification.
A summary of all classification results can be found in Table 2. These high re-
sults, which were achieved with the small dataset of just 5 subjects and which are
rigorously artifact cleaned, show that fNIRS has huge potential for cross-subject
classification in BCI.

Table 2. Average classification results and standard deviations in %.

Speech/Pause Aud Sil Img Aud/Sil Aud/Img Sil/Img

Accuracy 58 71 61 46 68 65 54
Standard deviations 3.1 9.5 3.8 3.7 6.2 11.3 5.0

5 Conclusion

We have shown that fNIRS signals from speech related tasks produce brain
activity that is consistent across multiple subjects. By selecting only the five
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most relevant features that are reliable across all subjects, we are able to clas-
sify speaking modes solely based on training data from other subjects and thus
make user specific training obsolete. Our rigorous filtering for artifacts and the
significant results further support the argument that fNIRS signals from speech
tasks have huge potential for future BCI applications, as they potentially reduce
the amount of training needed in future experiments.
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