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Abstract— Speech is our most natural form of communication
and even though functional Near Infrared Spectroscopy (fNIRS)
is an increasingly popular modality for Brain Computer Inter-
faces (BCIs), there are, to the best of our knowledge, no previous
studies on speech related tasks in fNIRS-based BCI.
We conducted experiments on 5 subjects producing audible,
silently uttered and imagined speech or do not produce any
speech. For each of these speaking modes, we recorded fNIRS
signals from the subjects performing these tasks and distinguish
segments containing speech from those not containing speech,
solely based on the fNIRS signals. Accuracies between 69%
and 88% were achieved using support vector machines and a
Mutual Information based Best Individual Feature approach. We
are also able to discriminate the three speaking modes with 61%
classification accuracy. We thereby demonstrate that speech is a
very promising paradigm for fNIRS based BCI, as classification
accuracies compare very favorably to those achieved in motor
imagery BCIs with fNIRS.

I. INTRODUCTION

A. Motivation

Speech has long been an established paradigm for human-
computer interaction as it is intuitive and very efficient. How-
ever, speech has not been applied as a paradigm to functional
Near Infrared Spectroscopy (fNIRS) based Brain Computer
Interfaces (BCIs) to this point. We therefore investigate the
feasibility of speech in different modes as a paradigm for
BCIs, since it allows for intuitive passive and active BCI
control.
fNIRS enables the robust measurement of brain activity and
is less affected by movement artifacts than other modali-
ties for BCIs such as electroencephalography (EEG). With
the growing number of fNIRS research, advances towards
even higher mobility can be expected. Furthermore, fNIRS
and EEG are combinable to profit from the advantages of
both modalities. In contrast to functional magnetic reso-
nance imaging (fMRI), which relies on the same effects as
fNIRS (see Section I-B), fNIRS systems are inexpensive and
portable, which makes them particularly suitable for BCIs in
real-life scenarios.
Recently, the feasibility of fNIRS for BCI using motor

Part of this work was performed during the invited visit of the first
author at A*STAR, Singapore, for which we are very thankful. This project
received financial support by the ’Concept for the Future’ of Karlsruhe
Institute of Technology within the framework of the German Excellence
Initiative.

1Christian Herff, Felix Putze, Dominic Heger and Tanja Schultz are with
the Cognitive Systems Lab, Karlsruhe Institute of Technology, Adenauerring
4, 76131 Karlsruhe, Germany. christian.herff@kit.edu

2Cuntai Guan is with the Institute for Infocomm Research, Agency for
Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #21-01
Connexis, Singapore 138632.

imagery has been shown by Coyle [1]. Ang et al. [2]
successfully used mental arithmetics to demonstrate BCI
capabilities of fNIRS, by distinguishing between levels of
difficulty with high accuracies. Several fMRI studies have
shown different activation patterns in speech related brain
areas (e.g. [3]). Even though fNIRS has been used in a
number of clinical studies investigating speech (e.g. [4]),
there are only very limited studies using speech related tasks
in combination with fNIRS for BCI control. Naito et al.
[5] used a single-channel fNIRS system to detect imagined
singing.
For speech to be used as modality for computer interaction
and to study speech activation patterns, we investigated the
discrimination of three different speaking modes in this
paper: Normal audible speech (AUDSpeech), silently uttered
speech, for which our subjects moved their articulatory
muscles as if speaking, without producing actual sounds
(SILSpeech) and speech imagery, where the subjects con-
ceived themselves speaking but only imagined the movement
of their articulatory muscles (IMGSpeech). We expected to
see different brain activation patterns between AUDSpeech

and SILSpeech since the latter lacks auditory feedback, and
between SILSpeech and IMGSpeech, since the latter involves
no articulation execution but planning, memory and speech
specific activations.

B. Functional Near Infrared Spectroscopy

fNIRS is a brain imaging technique based on the con-
centration changes of oxy-hemoglobin (HbO) and deoxy-
hemoglobin (HbR) caused by neural activity in the brain’s
cortical areas. These hemodynamic responses can be
recorded using light-sources and detector-optodes, which are
placed on the subject’s head. Sources emit at least two
wavelengths of light in the near infrared range of the elec-
tromagnetic spectrum (620 nm - 1000 nm). The properties
of the biological tissue allow the infrared light to disperse
through the scalp, skull and cortical areas of the brain and
exit again along the photon path [6]. At the end of this path,
whose depth is determined by the source-detector distance,
a detector measures the light intensities transmitted through
the head. As HbO and HbR have different light absorption
characteristics, the modified Beer-Lambert law [7] can be
applied to transfer optical densities changes (∆OD) into
HbO and HbR differences, denoted as ∆HbO and ∆HbR,
respectively. Given the source-detector distance l, path length
b and the absorption coefficients for HbO and HbR, αHbO

and αHbR, the concentration changes ∆HbO and ∆HbR can
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be calculated from ∆OD using the following equations:

∆HbO =
∆OD

b · l · αHbO
∆HbR =

∆OD

b · l · αHbR
(1)

Typically, a hemodynamic response to cortical activity rises
on stimulus onset for HbO and decreases for HbR. Levels
are expected to return to baseline after the end of the
stimulus. Figure 1 shows a hemodynamic response, which
was obtained by averaging over all SILSpeech trials from
subject 2 for a location on the lower motor cortex. It reflects
well the expected typical hemodynamic response and value
range.
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Fig. 1. Average hemodynamic response of subject 2 when speaking silently
followed by pausing, for a location in the lower motor cortex.

C. Relevant Brain Areas

For approximately 90% of the population, the left hemi-
sphere is dominant for speech and language processing.
This lateralization is even larger for right-handed individuals
(see [8]). To increase the probability of measuring relevant
areas, we decided to focus on right-handed subjects in this
pilot study. The prefrontal cortex is implicated in executive
functions such as decision making, expectation management
and the working memory, while the Broca’s and Wernicke’s
areas are relevant for speech perception and production, and
the lower motor cortex is identified with muscle control for
the tongue and facial areas.
Thus, we recorded fNIRS signals from Broca’s (4 optodes)
and Wernicke’s (10 optodes) areas, the prefontal (12 optodes)
and lower motor cortex (6 optodes) to cover all relevant
areas. We used an ANT Visor infrared camera system to
register the positioning of the 32 optodes and plotted them
onto the brain surface using the NIRS-SPM software [9]. See
Figure 2 for the exact optode positions in our experiment.

II. EXPERIMENTS

A. Experimental Setup

We used a Dynot232 system designed by NIRX Medical
Technologies with 32 optodes used both as sources and
detectors, sampling at 1.81 Hz. The system outputs values
for every source-detector pair of which we selected only
pairs with distances between 2.5 and 4.5 cm. This way, we
obtained 252 channels of raw optical densities. Wavelengths

(a) b)

Fig. 2. (a) Optode positions frontal view. (b) Optode positions left lateral
view. Created with [9].

of 760 and 830 nm were used.
The subjects were placed 50 cm away from a computer
screen with 48 cm screen size and had the NIRS-optodes
fixed to their heads using a helmet to firmly keep the optodes
at the desired positions. Five male students with a mean age
of 27.6 years participated in our study. All of them were
right-handed with a mean Edinburgh handedness score [10]
of 86.
The experiment consisted of 10 sentences, with nearly equal
lengths (roughly 66 characters) taken from the broadcast-
news domain.
The subjects were asked to produce utterances in the three
modes AUD, SIL, IMG, followed by pauses. The utterances
were prompted from displaying sentences on the screen.
Every utterance of a sentence is denoted as a trial. The
pauses following the utterances are denoted as separate
trials. The trials are named according to their respective
mode names, i.e. AUDSpeech, SILSpeech, IMGSpeech and
AUDPause, SILPause, IMGPause. Every sentence was re-
peated three times in each mode by every subject. Sentences
were presented in blocks of 6, which had to be produced
in the same mode. Mode order and sentence order were
randomized to eliminate sequence effects. Each block had
4 steps. It started with (1) the instruction in which mode the
following sentences had to be produced, i.e. either Audible,
Silent or Imagine. (2) A beep indicated that a sentence was
about to be displayed in 2 seconds. (3) The sentence was then
displayed for a duration of 8 seconds in which the subject had
to either read it out audibly, silently or imagine reading it out.
The AUDSpeech, SILSpeech, IMGSpeech trials were recorded
in these periods. (4) Afterwards, a fixation cross was shown
for 10 seconds. The respective Pause trials were recorded
in these intervals. These four steps were repeated 6 times to
form a block. In between blocks, the subjects had 25 seconds
to relax.
Table I summarizes the complete corpus characteristics.

B. Signal Preprocessing

The 252 channels of raw optical densities were sampled
at 1.81 Hz, which is low enough to not require low-pass
filtering. We used the HomER package to transfer raw
optical densities to the ∆HbO and ∆HbR values.
Afterwards, we detrended the resulting 252 channels of
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TABLE I
CORPUS CHARACTERISTICS

Subject-ID 1 2 3 4 5
AUDSpeech trials 13 30 30 30 24
AUDPause trials 13 30 30 30 24
SILSpeech trials 18 30 30 30 18
SILPause trials 18 30 30 30 18
IMGSpeech trials 18 30 30 30 18
IMGPause trials 18 30 30 30 18
Total recording time
(minutes) 20.6 37.5 37.5 37.5 25.2

∆HbO and ∆HbR. Trials were then extracted based on
the experiment timing. A class label corresponding to the
Speech or Pause mode was assigned to each trial.

C. Feature Extraction

Feature extraction assumes an idealized hemodynamic
response, i.e. a rise in HbO and a decrease in HbR during
speech activity trials and a return to baseline-levels for the
subsequent Pause trials (see Figure 1). Based on the idea for
feature extraction by Leamy et al. [11], we take the mean µ
of the first 7 samples of every trial (corresponding to roughly
4 seconds) and subtract the mean of samples 9 to 15 of the
∆HbO and ∆HbR signals in every channel i for each trial
t.

f∆HbO
i,t = µ(∆HbOi

t,1:7)− µ(∆HbOi
t,9:15) (2)

f∆HbR
i,t = µ(∆HbRi

t,1:7)− µ(∆HbRi
t,9:15) (3)

In total, we extract 504 features per trial. After extraction,
features of every channel were standardized to zero mean
and unit standard deviation (z-normalization).

D. Feature Selection

We used a Mutual Information based Best Individual
Feature (MIBIF) approach as presented by Ang et al. [12]
to select the top k = 30 features out of the 504-dimensional
feature space on the training data. The Mutual Information
I(X;Y ) between two random variables X and Y , measures
the amount of information the two variables share. Therefore,
a high Mutual Information between features and the class
labels should indicate features which contain highly relevant
information. This would potentially lead to high classification
accuracy assuming that the training data are representative
of the test data. The Mutual Information I(C;F ) between
class labels C and features F is defined as

I(C;F ) = H(C)−H(C|F ) (4)

with H(C) and H(C|F ) referring to the entropy and the
conditional entropy, respectively. Using Bayes theorem and
given the equal priors, the conditional probability p(c|f) and
the joint probability p(c, f), which are needed to determine
the entropies, can be calculated through p(f |c). Ang et al.
[12] describe a method to estimate the probability density

function p(f |c) from the training data. To estimate the con-
ditional probability, kernel density estimation using Parzen
windows is applied:

p̂(f |c) =
1

nc

∑
j∈Ic

φ (fj , h) , (5)

where nc is the number of samples in class c, Ic is the set of
sample indices in class c and φ being a smoothing kernel with
parameter h. A univariate Gaussian kernel was employed for
smoothing:

φ(x, h) =
1

2π
e
−
(

x2

2h2

)
(6)

MIBIF then selects the k features fl with highest Mutual
Information with the class labels arg maxl(I(C, fl)). We set
k = 30 after studying the distributions of Mutual Information
of features with the class labels.
The MIBIF approach presents a fast feature selection tech-
nique that uses a high relevance criterion to reduce the
dimensionality of the feature space. It is orders of magni-
tude faster than more complex Mutual Information based
approaches as for example the Mutual Information based
features selection (MIFS) by Battiti [13] and still yields
comparable or even better results for BCI data (compare
[12]).

E. Classification

To evaluate our system, we applied a 10-fold person
dependent cross-validation approach. For classification, we
employ support vector machines with radial basis function
kernels on the resulting 30-dimensional feature set S deter-
mined with MIBIF. SVM parameters c and γ are estimated
via cross-validation on the training data using a grid search.
We tested the three Speech modes combined against the
three Pause modes combined to discriminate general speech
activity from inactivity. Then, we classified every mode
against its respective Pause trials in a binary classification
setup. Additionally, the three speaking modes AUDSpeech,
SILSpeech and IMGSpeech were discriminated from each
other in binary and three-class experiments.

III. RESULTS

All classification results are presented in Figure 3. Part (a)
of Figure 3 shows classification results of the modes against
their respective Pause. Classifying combined Speech (build
from AUDSpeech, SILSpeech and IMGSpeech) from the com-
bined Pause worked very reliably for all subjects with
an average accuracy of 79%. Next, we tested each of the
three modes individually against their respective Pause. As
expected, distinguishing between AUDSpeech and AUDPause

worked best (88%) as most neuronal activity should be
observed due to the acoustic feedback. Results for SILSpeech

and SILPause are slightly lower, which might be explained
by the fact that no acoustic signal has to be processed in
the brain and thus the neural activity level of SILSpeech

might be closer to the one in SILPause. Yet, classification
performance is still very high with 80% average accuracy.
IMGSpeech versus IMGPause yielded lowest results (69%)
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Fig. 3. Classification results of all subjects for binary and three-class
problems. (a) Binary classification experiments Speech against Pause
in all modes. (b) Classification accuracies between Speech of different
speaking modes. Each color represents one subject. Whiskers indicate
standard deviations. Dotted line stands for naive classification accuracies.

as execution of the actions is entirely missing in the brain
activity.
Classification accuracies between the different speaking
modes are illustrated in part (b) of Figure 3. IMGSpeech could
be discriminated from AUDSpeech and SILSpeech reliably
with 80% and 72% on average. Differentiating between
AUDSpeech and SILSpeech yielded the lowest results with
65% accuracy on average and produced the only two results
lower than naive classification. The three classes could be
distinguished well with an average accuracy of 61% com-
pared to a naive classification accuracy of 33%.
The fact that these high accuracies, which are at least as
good as comparable experiments with motor imagery, were
achieved with less than 9 minutes of training data in the
binary experiments indicates the large potential of speech
as a paradigm for fNIRS based BCI. The low inter-subject
variances further support this fact.
Table II summarizes our findings by showing average results
and standard deviations across all five subjects. All captured
fNIRS signals strongly resemble expected hemodynamic
responses (compare Figure 1). We obtained high accura-
cies for AUDSpeech versus SILSpeech and IMGSpeech versus
IMGPause and since our experimental design controls for
artifacts, these results are indeed achieved based on brain
activity patterns.

TABLE II
AVERAGE CLASSIFICATION RESULTS AND STANDARD DEVIATIONS

ACROSS SUBJECTS IN %.

Speech/Pause AUD SIL IMG

Acc. 79 88 80 69
Std. 3.6 6.3 8.5 8.0

AUD/SIL AUD/IMG SIL/IMG AUD/SIL/IMG

Acc. 65 80 72 61
Std. 23.1 15.0 10.7 13.8

IV. SUMMARY
We have shown that the fNIRS signals captured while

performing a speech related task has large potential to be
used for BCI control with very high accuracies. This is a
novel direction for NIRS-based BCIs which mainly relied on
motor imagery to this point. Our results are highly significant
and compare favorably to those achieved with motor imagery,
while being natural, intuitive and do not require any prior
learning. Moreover, our experimental setup allows for further
investigations of brain activation patterns for speech related
tasks.
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B. Ringelstein, and H Henningsen, “Handedness and hemispheric
language dominance in healthy humans,” Brain, vol. 123, no. 12, pp.
2512–2518, 2000.

[9] JC Ye, S Tak, KE Jang, J Jung, and J Jang, “Nirs-spm: Statistical
parametric mapping for near-infrared spectroscopy,” NeuroImage, vol.
44, pp. 428 – 447, 2009.

[10] RC Oldfield, “The assessment and analysis of handedness: The
Edinburgh inventory,” Neuropsychologia, vol. 9, pp. 97–113, 1971.

[11] DJ Leamy, R Collins, and T Ward, “Combining fNIRS and EEG
to Improve Motor Cortex Activity Classification during an Imagined
Movement-Based Task,” in HCI (20), 2011, pp. 177–185.

[12] KK Ang, Z Yang Chin, H Zhang, and C Guan, “Filter bank
common spatial pattern (fbcsp) in brain-computer interface,” in Neural
Networks, 2008. IJCNN 2008., June 2008, pp. 2390 –2397.

[13] R Battiti, “Using mutual information for selecting features in super-
vised neural net learning,” IEEE transactions on neural networks / a
publication of the IEEE Neural Networks Council, vol. 5, no. 4, pp.
537–50, Jan. 1994.

1718


	MAIN MENU
	Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

