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Abstract—Feature extraction has been a crucial and challeng-

ing task for EEG-based BCI applications mainly due to the

problems of high-dimensionality and high noise level of EEG

signals. In this paper we developed a novel feature extraction

algorithm for EEG-based emotion detection problem. The pro-

posed algorithm is derived from viewing EEG signals as the

activation/deactivation of sources specific to the brain activities of

interest. For binary classification problem, to be more specific, we

consider the EEG signals for the two types of brain activities as

characterized by the activation/deactivation of two discriminatory

sources in the brain, with one source activated and the other

one deactivated for one particular type of brain activities. The

proposed algorithm, termed Asymmetric Spatial Pattern (ASP),

extracts pairs of spatial filters, with each filter corresponding to

only one of the two sources. The idea of ASP is neurologically

plausible for certain situations. For example, according to the

valence hypothesis of emotion, the left hemisphere is more

activated in positive emotions and the right hemisphere is more

activated in negative emotions. The effectiveness of the proposed

algorithm is confirmed by application to real data for two types

of EEG-based emotion detection problems: arousal detection

(strong v.s. calm), and valence detection (positive v.s. negative).

Experimental results on the real data also show that some of

the asymmetric spatial patterns by ASP are consistent with the

current neurophysiological findings on brain emotion processing.

I. INTRODUCTION

It has been well known that emotional responses are inher-
ently important for the survival of individuals and their species.
After decades of neglect, neuroscience has embraced emotion
as an important research area. After decades of development
of machine intelligence, the importance of emotion has been
acknowledged and has been motivating the research work
in affective computing. However, with meager understanding
of the complex mechanism of human emotion recognition,
machine emotion recognition has remained as an extremely
challenging task. With the recent development of brain sensing
techniques and brain-computer interface (BCI) technologies,
the use of brain signals for emotion detection has become a
new and hot topic.

With its purpose first proposed for assisting the physically
challenged, BCI research has now expanded to a wider range
of applications. The interest in BCI technology stems from
the unique advantage of having access to the user’s ongoing
brain activity which enables applications spanning a variety
of domains such as entertainment (e.g. brain-activity based
gaming [1]), safety (e.g. detecting the level of alertness [2]),
security (e.g. brain activity based biometrics [3]), and neuro-

economics (e.g. neural correlates of consumer choices for
marketing [4]). As for HCI applications, BCIs can also benefit
from adapting their operation to the emotional state of the
user. The use of BCI for emotion recognition has its special
advantage as compared to other modes (e.g., audio-visual
signals) by having access to brain activity which can allow
significant insight into the user’s emotional state. In neuro-
science various brain imaging technologies have been utilized
to understand emotions in the brain [5]. The range of signals
that can be measured to monitor the brain activity include
electrical potentials to hemodynamic measurements, including
invasive eCoG, non-invasive EEG and MEG, fMRI, PET,
and fNIRS. Of particular interest in the current BCIs is the
electroencephalogram (EEG) due to its high time resolution,
noninvasiveness, ease of acquisition, and cost effectiveness.
In this paper, we present our work on EEG-based emotion
detection.

Currently, few efforts have been initiated to recognize
emotions from EEG signals. Chanel et al. in [6] asked the
participants to recall past emotional events, and obtained the
best result 79% using EEG for 3 categories, 76% for 2
categories. [7] used self-elicitation and extracted EEG time-
frequency features and pairwise mutual information which
resulted in 63% for 3 classes. In [8] classification accuracies
of 72% were obtained for 2 classes and 58% for 3 classes.
It is difficult to make comparisons between these studies
because they differ on several criterions, such as the number of
subjects, the interested emotion categories, emotion elicitation
method, selection of emotion stimuli, and the way of labeling
data.

The volume of work published on EEG-based emotion
detection is relatively small compared to emotion detection
based on other modalities such as audio-visual signals. This is
mainly due to a lack of neural emotional model and the high
dimensionality and high noise level of EEG signals. Similar
to other EEG-based tasks (e.g., EEG-based motor imagery
classification), feature extraction plays a crucial and challeng-
ing role for a good performance. In this paper, we propose a
novel feature extraction algorithm, termed Asymmetric Spatial
Pattern (ASP), for EEG-based emotion detection problem. The
proposed algorithm is derived from viewing EEG signals as the
activation/deactivation of sources specific to the brain activities
of interest. The idea of the proposed ASP is neurologically
plausible for certain situations. For example, according to the
valence hypothesis of emotion, the left hemisphere is more
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Fig. 1. A simple illustrative example where two sources corresponding to
two classes {+,�} have a local distribution on the left and right side of the
cortex.

activated in positive emotions and the right hemisphere is more
activated in negative emotions.

The rest of the paper is structured as follows: Section II
describes the proposed feature extraction procedure. Section
III presents the procedure for affective data collection and
ground truth establishment. Experimental results of the pro-
posed method on data from four subjects are presented in
section IV. Finally, some conclusions are drawn in section
V.

II. FEATURE EXTRACTION BY ASYMMETRIC SPATIAL
PATTERN (ASP)

We first consider EEG signals as characterized by two
discriminatory sources S1,2 for a binary classification problem
! = {+,�}. Without loss of generality, we suppose that
S1 is more activated when it is class +, while S2 is more
activated for class �. If these two sources have different spatial
locations on the cortex and have a local distribution on the
multi-channel EEG signals, we can divide the group of EEG
channels covering the two sources into two subgroups:

X =


X1

X2

�
=


f1(S1)

f2(S2)

�
, (1)

where X denotes the EEG signal, X1,2 denotes the two
subgroups of X covering the two sources S1,2, and f1,2 are
some unknown transfer functions relating S to X . A simple
illustrative example which visualizes the distribution of two
sources is shown in Figure 1. With the above assumption, the
following asymmetric feature is formulated to decide the label
of a single EEG trial X:

AF (X) =

P (S1)

P (S2)
, (2)

where P (S) denotes the power of a source signal S. The
asymmetric feature defined in (2) measures the difference in
the activation level between the two sources. It would have
a large value if the EEG signal X is from one class and a
small value if X is from the other class. Since the underlying
sources S1,2 are unknown, (2) can only be estimated from X
as

AF (X) =

P (g1(X1))

P (g2(X2))
(3)

where g(X) = f�1
(X) is some inverse transfer function from

X to S. For linear transfer functions between X and S, we
have g(X) = WTX .

The objective of ASP is to maximize asymmetry in the
activation level between the two sources by pairs of spatial
filters, one for each of the two sources. To derive the objective
function of ASP, the asymmetric feature in (2) and (3) is
formulated as the following Rayleigh quotient of the two
sources:

AF (X) =

wT
1 ⌃1w1

wT
2 ⌃2w2

, (4)

where ⌃1,2 are the covariance matrices of band-pass filtered
EEG signals of the two sources, which can be estimated by:

⌃i =
1

N
XiX

T
i , i = 1, 2 (5)

where Xi 2 RM⇥N is the subgroup of EEG signals for source
i, M and N are the number of channels in the subgroup and
the number of time samples of an EEG trial, respectively.

As there are two conditions under which EEG signals are
recorded, there are in total four covariance matrix estimates
for ⌃1,2, which we write as follows:

⌃1+ = ⌃A+ ,⌃2+ = ⌃D+ , for class +, (6)
⌃1� = ⌃D� ,⌃2� = ⌃A� , for class -. (7)

Note that the covariance matrices in the above two equations
are the pooled estimates of the covariance matrices for the two
sources under the two conditions. They are computed as the
average across all samples from the same class:

⌃i+/� =

1

|I+/�|
X

X2I+/�

⌃i, i = 1, 2 (8)

where I+/� denotes the set of EEG trials from class +/�,
respectively. |I| is cardinality of the set. ⌃i, as defined in (5),
is the covariance matrix estimated from a single EEG trials
X .

The asymmetry between the two sources can be maximized
by the following criterion function:

max

⇢
wT

1+⌃1+w1+

wT
2+⌃2+w2+

�
\ min

⇢
wT

1�⌃1�w1�

wT
1�⌃1�w1�

�
,

or equivalently,

max

⇢
wT

A+⌃A+wA+

wT
D+⌃D+wD+

�
\ max

⇢
wT

A�⌃A�wA�

wT
D�⌃D�wD�

�
. (9)

The criterion function (9) contains two parts, one for each
condition. The intersection sign \ indicates the optimization
of both of the two terms. We observe that (9) is a function of
four w’s and is determined by four covariance matrices.

To simplify the criterion function (9), we first make the
following constraint on the pair of w’s:

wT
A⌃AwA + wT

D⌃DwD = 1, (10)

for the two classes {+,�}. Later we show that this simple
constraint can be easily satisfied. With this constraint, we have

max

⇢
wT

⌃Aw

wT
⌃Dw

�
_ max{wT

⌃Aw}, or

max

⇢
wT

⌃Aw

wT
⌃Dw

�
_ min{wT

⌃Dw}, (11)



and (9) is equivalent to:

max{wT
A+⌃A+wA+} \ min{wT

D�⌃D�wD�}, or
max{wT

A�⌃A�wA�} \ min{wT
D+⌃D+wD+}. (12)

Since the simultaneous maximization of A and minimization
of B can be expressed as the maximization of the Rayleigh
quotient of A over B, (9) is now equivalent to

max

⇢
wT

A+⌃A+wA+

wT
D�⌃D�wD�

�
\ max

⇢
wT

A�⌃A�wA�

wT
D+⌃D+wD+

�
. (13)

From (6) and (7), we can see that the first term in (13) is
related only to source 1, while the second term is related
only to source 2. The two covariance matrices in each term
correspond to the activation/deactivation of the same source.
We can therefore reduce the four spatial filters w’s to two
spatial filters by making wA+

= wD� and wA�
= wD+ .

From the above derivation, we formulate the pair of criterion
functions of ASP as follows:

J1(w1) = max

⇢
wT

1 ⌃1+w1

wT
1 ⌃1�w1

�
, (14)

J2(w2) = max

⇢
wT

2 ⌃2�w2

wT
2 ⌃2+w2

�
. (15)

(14) finds a spatial filter w1 for source 1 which maximizes
the difference between the activation and deactivation status
of source 1, while (15) finds another filter w2 for source 2.

The unity constraint (10) can be easily satisfied by scaling
of the spatial filters w1 and w2. Let w0

1 = aw1 and w0
2 = bw2,

it is always possible to find a and b to satisfy

w0T
1 ⌃1+w

0
1 + w0T

2 ⌃2+w
0
2 = a2S1+ + b2S2+ = 1,

w0T
1 ⌃1�w

0
1 + w0T

2 ⌃2�w
0
2 = a2S1� + b2S2� = 1.

The scaling of w1 and w2 is trivial and can be discarded
because the asymmetric feature obtained by ASP is the log
ratio of the variances between the two sources:

y = log

✓
wT

1 ⌃1w1

wT
2 ⌃2w2

◆
. (16)

III. AFFECTIVE DATA COLLECTION & GROUND TRUTH
ESTABLISHMENT

The gathering of high quality affective data for the study of
EEG-based emotion detection requires special care to be paid
to the experiment design of emotion elicitation, ground truth
labeling, and EEG data collection.

A. Emotion elicitation
1) Emotion categories of interest: In our work, we adopted

the dimensional view of emotions for the study of two types
of emotion detection tasks: high arousal (HA) vs. low arousal
(LA), and high valence (HV) vs. low valence (LV). Affective
arousal measures the intensity of emotion ranging from calm
to excited, while affective valence ranging from unpleasant
to pleasant. Three categories of emotions are thus of interest:
high-arousal low-valence (HALV, or strongly negative), high-
arousal high-valence (HAHV, or strongly positive), and low-
arousal neutral-valence (LANV, or neutral).

2) Emotion stimuli selection: We selected motion pictures
as emotion stimuli because they seem to be more effective
and close to the real-life situation in eliciting emotions than
pictures, or music [9]. A total of 80 video clips are collected
from youtube with 40 neutral, 20 positive, and 20 negative
video clips. The video clips were censored and manually
edited such that the length of each neutral video clip is
approximately 30s and the length of each emotional (positive
or negative) video clip is approximately 60s. Emotional clips
are longer than neutral clips because we found more time
is needed to effectively build up the desired high arousal
emotional states than neutral emotions.

3) Emotion stimuli presentation: The video clips are
viewed in 5 sessions such that each session lasts for less
than 20 minutes to avoid negative bias to the elicited emotion
due to prolonged viewing process. An emotional (positive or
negative) video clip is always preceded and succeeded with
neutral videos to reset of the subject to neutral emotional state.
Before the viewing of each video clip, a cross is displayed on
the screen for 3s to let the subject prepare for the viewing. A
15s rating period immediately follows the played video clip
for the subject to assess the induced emotions during watching
the video clip.

B. Emotion ground truth establishment

Although the video clips are selected to elicit emotions
belonging to one of the three emotion categories, there is little
way of knowing whether the intended emotion is successfully
elicited or not. This is because emotions are very dependent on
the subject’s past experience. We may have tried to please, but
the subject was irritated because of something she remembered
unrelated to the task. We may have tried to irritate and not
succeeded. During our data collection process, self-assessment
is used to measure the induced emotions. Self-Assessment
Manikin (SAM) [10], which is a pictorial assessment technique
for measuring emotion, is presented to the subject immediately
after the viewing of each video clip. The measurement using
SAM is in terms of ratings from 1 to 9 for emotion dimensions:
arousal, and valence (dominance is not used in this paper).
Before the start of the data collection experiment, the subject
was informed to rate her emotions as honestly as she can and
there is no right or wrong answers.

To enhance the reliability of the emotion ground truth of
EEG data, we discarded EEG trials if the subject ratings are
not consistent with the video stimuli’s labels. By “consistent”
we mean the label of a video stimulus is the same as the crisp
ground truth from the subject ratings. As the intended emotion
may not have been fully developed yet during the start of each
video clip, we discarded EEG segments within the first few
seconds of viewing to further enhance the reliability of the
ground truth for our data. We selected EEG segments from 8s
to 26s for neutral videos (30s long), and from 18s to 54s for
emotional videos (60s long).



Fig. 2. The set of 32 EEG channels used in the experiment.

C. EEG signal recording
EEG signals are acquired with a sampling rate of 250Hz.

32 EEG electrodes were attached to subjects’ scalp according
to the international 10-20 system. A diagram of the used
electrodes and their position is shown in Fig. 2. During
the setup, we tried our best effort to ensure the impedance
of electrodes to be below 10 kOmega, with only very few
exceptions in the range of 10-50 kOmega for some subjects.
Subjects were instructed to sit comfortably and minimize
body movement during the viewing of motion pictures. The
recording of 5 sessions for each subject is done on different
days.

IV. EXPERIMENTS

A. Evaluation methods
To evaluate the performance of the proposed algorithm, we

applied it on the affective data described in section III for
two types of emotion detection problems: arousal detection
(HA v.s. LA, or strong v.s. calm) and valence detection (HV
v.s. LV, or positive v.s. negative). The affective data were
collected from 4 subjects and in 5 sessions on different days
for each subject. The EEG signals from a video clip were cut
into trials, that is, segments of 6s. There is no overlapping
between different EEG trials from one video clip. To avoid
classification bias, we used a “leave-one-vide-out” strategy for
the evaluation of classification accuracy. In “leave-one-video-
out”, each time all trials that are extracted from one video clip
are taken out as the test set, while the training set is comprised
of trials from other video clips.

B. Feature extraction & Classification
Two other feature extraction algorithms are also imple-

mented and selected as the benchmark algorithms: asymmetric
features and filter bank common spatial pattern (FBCSP) [11],
which is an enhanced variant of CSP method. Asymmetric
features are used in [8] for EEG-based emotion detection. We
selected 5 pairs of EEG channels from the frontal lobe to
get 5 asymmetric features in our experiments. The 5 pairs of

EEG channels selected are: FP1/FP2, F7/F8, F3/F4, FT7/FT8,
and FC3/FC4. FBCSP is proposed by Ang et al. [11] and
is the winner algorithm for single-trial EEG motor imagery
classification on datasets IIa and IIb from BCI competition
IV. For all the feature extraction algorithms, the same pre-
processing method is used. EEG signals are decomposed by a
filter bank into 8 sub-bands: 0.5-4Hz, 4-8Hz, 8-12Hz, 12-16hz,
16-24Hz, 24-32Hz, 32-40Hz, and 40-50Hz. These frequency
bands are selected because they roughly correspond to the
typically defined EEG frequency bands such as delta, theta,
alpha, and gamma bands. The filter bank is implemented using
a zero-phase Chebyshev Type II Infinite Impulse Response
(IIR) filter so that no phase distortion is introduced between
different channels by the band-pass filtering.

After feature extraction, Recursive Fisher linear discrimi-
nant (RFLD) [12] is applied to further reduce the dimension-
ality of feature vectors. RFLD employs Fisher linear discrim-
inant (FLD) to find discriminant features that best separate
different classes. A recursive strategy is integrated into FLD
to overcome the feature number limitation of C � 1, where
C is the number of classes. For binary classification problem,
the number of features by FLD is 1, which is obviously a
limitation for FLD. In the case of RFLD, the number of
features can be extracted is not limited.

The performance of various feature extraction algorithms
for EEG-based emotion detection are tested with 3 popular
classifiers: K-nearest neighbor (KNN), Naive Bayes (NB), and
support vector machine (SVM) with RBF kernel. We tried all
combinations of the three feature extraction algorithms and the
three classifiers. The experiment results are shown below.

C. Results

The classification performance of each combination of fea-
ture extraction and classifier is obtained by the “leave-one-
video-out” strategy. The classification error rates are sum-
marized in Table I. The error rates for each combination of
feature and classifier shown in Table I are averages across
the 4 subjects. From the table, we observe that ASP achieves
an average of 17.54% and 33.95% for arousal and valence
recognition, respectively. An reduction of 21.8% and 9.13%
in average error rate is achieved by ASP compared to the best
of CSP and AF for arousal and valence recognition, respec-
tively. The performance of ASP with all the three classifiers
are significantly better than those of AF and CSP with the
corresponding classifiers. The classification accuracies of the
three feature extraction algorithms and the three classifiers are
plotted in Figure 3 and 4 for arousal recognition, and Figure 5
and 6 for valence recognition. Figure 3 and 5 group different
feature extraction algorithms together, while figure 4 and 6
group different classification algorithms together. It can be
observed that ASP improves the classification performance
significantly compared to AF and CSP. The comparison be-
tween the three classifiers shows that the three classifiers have
similar performance.



TABLE I
MEAN CLASSIFICATION ERROR RATES FOR EMOTION DETECTION BY

DIFFERENT FEATURES AND CLASSIFIERS.

Arousal classification (mean error rates (%))

KNN NB SVM ave

AF 37.48 29.13 30.58 32.40
CSP 23.02 21.99 22.28 22.43
ASP 17.75 16.90 17.97 17.54
ave 26.09 22.68 23.61 24.12

Valence classification (mean error rates(%))

KNN NB SVM ave

AF 37.99 35.99 38.11 37.36
CSP 41.77 42.79 42.46 42.34
ASP 33.49 33.76 34.61 33.95
ave 37.75 37.51 38.39 37.88

Fig. 3. Mean classification accuracies for arousal recognition. Accuracies
for different feature extraction algorithms are grouped together.

Fig. 4. Mean classification accuracies for arousal recognition. Accuracies
for different classification algorithms are grouped together.

D. Discussion

Much evidence from neuropsychological study has shown
the asymmetric cortical activity for emotion processing [13],
[14], [15], [16], [17], [18], [19], [20], [21], [22]. The valence
hypothesis predicts right hemisphere dominance for negative
and lateralization towards the left hemisphere for processing
of positive emotional material. For example, the asymmetric

Fig. 5. Mean classification accuracies for valence recognition. Accuracies
for different feature extraction algorithms are grouped together.

Fig. 6. Mean classification accuracies for valence recognition. Accuracies
for different classification algorithms are grouped together.

involvement of prefrontal cortical regions in positive and nega-
tive affect was suggested over 70 years ago by observations of
persons who had suffered damage to the right or left anterior
cortex [19]. [23] showed relatively more power for negative
valence over the left temporal region as compared to the
right and a laterality shift towards the right hemisphere for
positive valence. In addition, emotional processing enhanced
gamma band power at right frontal electrodes regardless of the
particular valence as compared to processing neutral pictures.
[24] reported greater right parietal activation, as measured by
alpha power, occurred during viewing of both negative and
positive stimuli. [25] showed higher right parietal beta power
for positive emotions compared to negative emotion.

Based on the neurophysiological studies on brain asymme-
try for emotion processing, we examine the spatial patterns
obtained by ASP. The spatial patterns of ASP can be easily
obtained by calculating the inverse transpose of the spatial
filter matrix P = W�T , where each column of P is a spatial
pattern and each column of W is its corresponding spatial
filter. In this paper, we show the spatial patterns as well as the
spatial filters obtained by ASP for one of the subjects in our
experiment. The spatial filters/patterns for arousal and valence
recognition is topographically visualized in Figure 7, 8, 9, and
10. Figure 7 and 9 show the spatial filters/patterns in alpha
band, while figure 8 and 10 show the spatial filters/patterns
in gamma band. The spatial filters/patterns are scaled by its
maximum absolute value so that the values at each electrode



Fig. 7. The spatial filters/patterns obtained by ASP for arousal recognition
in alpha band. Each pair of spatial filters (or spatial patterns) are combined
together to show a full-head topographic map. The maps in the upper panel
show the first 4 pairs of spatial filters, while the maps in the lower panel show
the first 4 pairs of spatial patterns.

Fig. 8. The spatial filters/patterns obtained by ASP for arousal recognition
in gamma band. Each pair of spatial filters (or spatial patterns) are combined
together to show a full-head topographic map. The maps in the upper panel
show the first 4 pairs of spatial filters, while the maps in the lower panel show
the first 4 pairs of spatial patterns.

position fall into range [-1,1]. Position in-between electrodes
are interpolated and may have a value out of the [-1,1] range.
As we used to ASP to obtain pairs of spatial filters, each
covering one hemisphere, each full-head topographic map in
these figures are obtained by combining a pair of spatial filters
(or a pair of spatial patterns). From the ASP spatial patterns
shown in these figures, we can generally see that prefrontal
asymmetry in alpha band and temporal asymmetry in gamma
band are observable for arousal recognition, and prefrontal and
parietal asymmetry in alpha band and temporal asymmetry in
gamma band are present for valence recognition.

V. CONCLUSION

This paper presents an EEG-based emotion detection sys-
tem, which is important for improving the machine emotional
intelligence, especially for BCI applications. A novel fea-
ture extraction algorithm, termed asymmetric spatial pattern
(ASP), is derived from viewing EEG signals as the acti-
vation/deactivation of sources specific to the brain activities
of interest. The proposed algorithm extracts pairs of spatial
filters, with each filter corresponding to only one of the

Fig. 9. The spatial filters/patterns obtained by ASP for valence recognition
in alpha band. Each pair of spatial filters (or spatial patterns) are combined
together to show a full-head topographic map. The maps in the upper panel
show the first 4 pairs of spatial filters, while the maps in the lower panel show
the first 4 pairs of spatial patterns.

Fig. 10. The spatial filters/patterns obtained by ASP for valence recognition
in gamma band. Each pair of spatial filters (or spatial patterns) are combined
together to show a full-head topographic map. The maps in the upper panel
show the first 4 pairs of spatial filters, while the maps in the lower panel show
the first 4 pairs of spatial patterns.

two sources. The idea of ASP is neurologically plausible
for certain situations. For example, according to the valence
hypothesis of emotion, the left hemisphere is more activated in
positive emotions and the right hemisphere is more activated in
negative emotions. The effectiveness of the proposed algorithm
is confirmed by application to real data for two types of EEG-
based emotion detection problems: arousal detection (strong
v.s. calm), and valence detection (positive v.s. negative). The
performance of the proposed algorithm is significantly better
than the benchmark feature extraction algorithms. Experi-
mental results on the real data also show that some of the
asymmetric spatial patterns extracted by ASP for are consistent
with the current neurophysiological findings.
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