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Abstract

This paper proposes a novel active learning method
for the classification of motor imagery electroen-
cephalogram (EEG) signals. Specifically, we propose
an iterative clustering and support vector-based crite-
rion to select samples of high-confidence to construct a
robust training set. The common spatial pattern (CSP)-
based features are iteratively clustered till the number
of support vectors in the cluster is less than a predefined
threshold. A predefined number of samples close to the
cluster centers are chosen. When such clusters cannot
be found, the samples that are of farthest distances to
a group of support vectors of class “0” and “1” are
alternately chosen. Experimental results on BCI com-
petition IV dataset IIb show superior performance com-
pared with a baseline method, which is 9% increase in
accuracy averaged across subjects and training sizes.

1. Introduction

Motor imagery, i.e., mentally rehearses or simulates
a given action, modifies neuronal activity in the similar
way as that generated by voluntary movements. The
frequency-specific changes such as event-related de-
synchronization/synchronization patterns can be trans-
lated into commands to operate external devices [1].
Machine learning plays an important role in translating
brain signals into interpretable commands. However,
most supervised classifiers are sensitive to the quality
and quantity of training samples and perform poorly
when the number of training samples is small or the
training samples are not representative of data distribu-
tions. Active learning can be employed to select the
most informative and representative samples to build a
good training set, hence, a robust classifier.

The most commonly used method for query selec-
tion is “Query by uncertainty” [2, 3, 4, 5]. It chooses
the uncertain samples that lie or are close to the decision

hyperplane [2, 3], or chooses those samples with low
confidence from the classifier output [5]. The second
type of method is “Query by committee” [5, 6], which
chooses the samples that are assigned to different class
labels by a committee of classifiers. The third type of
method is “Query by error reduction” [7, 8], which es-
timates the expected future error of a model using train-
ing set plus the query on unlabeled set. Recently, active
learning has found wide applications in text, video and
electrocardiographic data classification [4, 5, 9]. Can
we use those samples with high-confidence to build a
robust classifier? These samples are especially impor-
tant in exploring the intrinsic data structure of EEG sig-
nals. The features are iteratively clustered by choosing
the cluster with minimum number of support vectors.
This process is iterated till the number of support vec-
tors within cluster is less than a predefined threshold,
which leads to the samples of high confidence being se-
lected. If such samples cannot be found, the samples
that are of farthest distances to a group of support vec-
tors of class “0” and “1” are alternately selected. Our
proposed Iterative Clustering and Support Vector-based
High-Confidence Query Selection (ICSV-HCQS) is il-
lustrated in Figure 1.

Figure 1: An illustration of query selection criterion. The high-
confidence samples are either selected from those clusters with no
or few support vectors from iterative clustering, or selected from
those that lie far away from a group of support vectors of class
“0” and “1” of current classifier.
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2 Proposed Active Learning Method
We now describe our proposed active learn-

ing scheme. The initial labeled set ! contains a small
amount of labeled data, denoted as "!=(#"#$)%!×%"×%# ,
where $&, $' and $! are the number of channels, sam-
ples and trials, respectively. %!∈{0, 1} are the
labels. Set ' contains the unlabeled data, denoted as
"(=(#"#$)%!×%"×%$ . It is generally assumed that the
amount of unlabeled data is much larger than that of
labeled ones, i.e., $(≫$! holds. The EEG signals
are firstly band-pass filtered, the CSP filters are then
computed using labeled data and used to spatially filter
the band-pass filtered signals. Finally, the log variance
of the spatially filtered signals for the first and last
several rows are used as features, denoted as (! and ((

for labeled and unlabeled data [1]. Note that a sample
here refers to a trial which is represented by features.

Proposed ICSV-HCQS algorithm.

Input: the labeled and unlabeled set of features.
Output: actively selected labeled set and a classifier.

We firstly formulate the active learning process as:

)) = ℒ*(&&,'+ , (!, (() (1)

The learner repeatedly call the function '+ to obtain
the query samples based on the current classifier && and
features for labeled and unlabeled data, i.e., (! and ((.
The criterion for query sample selection by taking sup-
port vector machines (SVMs) classifier as an example
is illustrated in Figure 2. As is known, SVMs are the
hyperplanes that separate the training data in a maxi-
mum margin. The support vectors (*+,) that lie near to
the hyperplanes are utilized to select the representative
high-confidence queries. The initial set of indexes for
clustering is ,-.=!

∪
' . The features for both labeled

and unlabeled data, i.e., (,=[(! ((], are clustered into a
predefined number of clusters ($$), which are given by

[,&,(&] = &/((,, $$, ,-.) (2)

where &/ are the clustering methods such as K-Means
clustering; ,& and (& are the indexes of samples for
each cluster and that of the cluster centers. The num-
ber of support vectors from the -th iteration that fall
into the ./ℎ cluster (denoted as 1,0(.), whose indexes
are ,,0(.)) is firstly calculated. The cluster that has the
minimum number of *+, is likely to lie far away from
existing hyperplane, e.g., clusters 1 and 3 in Figure 1.
The query samples chosen from these clusters are of
high confidence considering existing hyperplane, the in-
clusion of which will hence boost the performance. The

chosen cluster index .̂ for (-+1)th iteration is given by

.̂ = argmin
$

(1,0(.)∣,,0(.) ∈ ,&(.)) (3)

where .=1, 2, ..., $$ denotes the number of clusters, .̂
is index of the cluster that has the minimum number
of *+,. If the number of SVs in the cluster (denoted
as 1,0(.̂)) is not greater than a predefined threshold,
i.e., 1,0(.̂)≤3,0 (threshold condition), the clustering
process stops. Otherwise, the cluster that has the small-
est 1,0 is chosen and the clustering process continues.
The iterative clustering process makes it possible to dis-
cover the intrinsic data structure, as a result, those sam-
ples with high confidence are selected. However, how to
choose the instances from the selected cluster to avoid
the noisy outliers is still a concern. To address this prob-
lem, we propose to search in the selected cluster and
choose those samples that are of minimum distances to
the cluster centers, which is given by

4̂ = argmin
#,#∈2&#∈3!($̂)

(5,((,(4), (,((&(.̂)))) (4)

where 5,((,(4), (,((&(.̂))) measures the Euclidean
distances between features of the 4th instance and
that of the center of selected cluster, i.e., (&(.̂).

5,(a,b)=
√∑!%

"=1(6(-)− 7(-))2 for features a and b,
where 8+ is the dimension of the features.

Assume )) query samples are required in each iter-
ation, however, only )% instances can be selected from
the chosen cluster, or no cluster can be found to sat-
isfy the threshold condition, i.e., )%<)). The rest of
samples )4=))-)% will be chosen by measuring the
distances between the features of instances in unlabeled
set and groups of SVs in -/ℎ iteration. )4 samples of
the farthest distances alternately to a group of SVs in
class “0” and “1” are selected. Each query :: (::∈)4)
is chosen by

:: =

{
5/(., ,,0(1)) if ;<=(;, 2)
5/(., ,,0(0)) otherwise

(5)

where ;<=() is modulo function and ;=(-−1)*)4+>,
where - and > denote iteration and >th query in -th
iteration. ,,0(:) (:=0,1) denote indexes of SVs in
classes “0” and “1”, i.e., ,,0(:)=,,0∣(%!(,,0)=:).
5/(., ,,0(:)) (denoted as 5/ for brevity) is given by

5/ = argmax
$,$∈2

(
%&∑

0=1

5,((,(.), (,(,,0(:, ?)))) (6)

where $0 is the number of SVs in class :. The labeled
(!) and unlabeled (' ) sets are thus updated and the CSP
filters are re-computed based on the new labeled set.
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Figure 2: Iterative Clustering and Support Vector-based High-Confidence Query Sample Selection (ICSV-HCQS).

The number of query samples is updated by !!=!!+"".
If !! does not reach the total number of queries "#, i.e.,
!!<"#, the query process will continue.

3 Experimental Results

Experiments are conducted to validate our proposed
method, BCI competition IV data set IIb, session 3 is
used. The data consist of 9 subjects performing mo-
tor imagery of left and right hand, with 120 trials per
session. Three bipolar recordings were recorded with a
sampling frequency of 250Hz. The data were bandpass-
filtered between 0.5Hz and 100Hz. The number of ini-
tially labeled data (randomly selected) is chosen as 14
and time segments from 0.5s to 2.5s with reference to
the onset of cue are used. The average accuracies of 10
runs are used as the results which are shown in Figure 3.
It can be observed from the figure that active query se-
lection has boosted the performance especially when
the number of training samples is small, e.g., less than
40. However, the performance decreases when there is
not enough unlabeled data to select, e.g., the query num-
ber is greater than 120. A simplified FBCSP algorithm
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(a) Subjects: 1-5.
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(b) Subjects: 6-9.

Figure 3: Classification accuracy for nine subjects using pro-
posed active query selection.

.

[1] is used as the baseline passive learning algorithm
for comparison (PS-sFBCSP). SVM with linear kernel
function is used as the classifier. It is worth noting that
no selection of subject-specific time segments and fre-
quency bands are carried out for both PS-sFBCSP and
our proposed method. Overlapping frequency bands
from 4 to 30Hz with a step size of 2Hz are employed.
For PS-sFBCSP, a predefined number of training sam-
ples (e.g., $=14, 28, 56, 70, 98 and 126) is randomly
chosen to train the classifier, which is then used to clas-
sify the unlabeled data, with the average classification
results of 10 runs shown in Table 1. While the number
of samples ($) used for training the classifier is actively
selected for our proposed approach. It is easily noticed
that active learning can pick up the most informative
samples of high-confidence to build a robust classifier.
This leads to an accuracy increase of 9% compared with
that achieved using the passive learning method. Note
that the accuracy is averaged across subjects and train-
ing sizes (see the two rows in bold in Table 1). A paired
sample t-test is conducted to test the null hypothesis that
the difference of accuracies of active and passive learn-
ing methods is a random sample from a normal distribu-
tion with mean 0. The null hypothesis is rejected at 5%
significance level with %=0.0208. This indicates the sig-
nificant difference in average accuracies of active versus
passive learning methods.

Note that recomputing the CSP filters definitely in-
creases the computational load in the calibration. Nev-
ertheless, once the classifier is built, it can be used for
online testing, which is fast enough. The reasons for
adding a pre-clustering process instead of directly se-
lecting those high-confidence samples lie in: a) clus-
tering is effective to exclude the outliers or noisy sam-
ples. b) iterative clustering is effective to explore the
intrinsic cluster structures of the data. Hence, more dis-
criminant features can be included in the training set. A
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Table 1: Comparisons of Accuracies Using Different Training Sizes (!) for Passive and Active Learning Methods

Methods Subj. L(14) L(28) L(56) L(70) L(98) L(126)
(!!±#") (!!±#") (!! ±#") (!!±#") (!!±#") (!!±#")

S1 52.05±5.93 55.00±4.60 59.13±4.69 60.89±5.51 59.68±7.53 60.88±6.80
S2 49.18±2.43 46.36±4.21 46.54±4.51 47.78±4.68 43.55±9.34 41.18±3.40
S3 49.11±3.86 51.14±3.85 47.50±3.46 44.33±5.28 41.13±4.64 44.12±10.09
S4 69.11±7.68 80.83±5.46 87.40±4.33 91.22±3.07 91.45±3.88 92.06±3.68

Passive S5 55.00±3.81 56.74±5.50 64.62±3.39 63.22±5.50 67.42±4.86 65.59±9.61
(PS-sFBCSP) S6 52.33±3.10 53.56±5.52 61.06±3.43 59.00±4.43 59.35±4.29 61.47±6.42

S7 62.12±6.87 66.36±6.13 68.46±7.08 72.11±4.27 72.10±4.10 70.88±5.62
S8 60.21±7.74 61.36±4.97 66.92±4.18 66.89±5.07 68.06±4.61 71.47±5.20
S9 56.10±4.17 58.64±4.09 64.23±4.90 66.44±4.18 65.32±3.67 66.18±8.23
!#! 56.13±5.07 58.89±4.93 62.87±4.44 63.54±4.67 63.12±5.21 63.76±6.73
S1 55.70±0.37 59.30±0.39 66.26±0.44 70.13±0.24 72.04±0.44 72.89±0.20
S2 52.76±0.12 51.08±0.08 49.57±0.08 53.14±0.35 54.99±0.28 58.89±0.20
S3 51.54±0.09 51.30±0.27 51.75±0.10 50.16±0.24 47.54±0.30 52.69±0.46
S4 70.68±0.59 81.81±0.83 95.55±0.13 97.59±0.02 98.11±0.004 98.59±0.02

Active S5 63.82±0.24 70.95±0.16 79.75±0.11 81.91±0.07 84.34±0.12 88.93±0.18
(ICSV-HCQS) S6 54.46±0.06 58.13±0.22 68.51±0.34 72.62±0.41 79.30±0.14 77.15±0.59

S7 59.84±0.26 67.72±0.22 77.75±0.23 82.45±0.09 86.71±0.14 89.79±0.28
S8 68.75±0.32 67.21±0.31 77.66±0.12 77.85±0.11 78.93±0.16 81.44±0.49
S9 59.27±0.11 61.67±0.37 74.46±0.20 77.55±0.17 83.71±0.19 84.36±0.43
!#! 59.65±0.24 63.24±0.32 71.25±0.19 73.71±0.19 76.19±0.20 78.30±0.32

Note: "!": Average Accuracy (%) over all subjects (shown in bold in the last row). !": Accuracy (%), "#: Variance.

good tradeoff should be achieved on how to choose the
maximum number of support vectors in a cluster ("$%).
A larger value will compromise the effectiveness of the
algorithm, whereas a small value will increase the com-
putational load due to the iterative clustering in search-
ing for the cluster that satisfies the criterion. On the
other hand, the prior knowledge of the feature structure
of the EEG signals should be taken into consideration
in selecting the number of clusters. In the implemen-
tation, "$%=2 and #&=2 are chosen, where the intrinsic
data structure can be exposed by the iterative clustering
process. In general, the performance of the proposed
approach is not very sensitive to the choice of number
of support vectors and clusters.

4 Conclusions
In this paper, we presented a novel iterative cluster-

ing and support vector-based active learning method for
the classification of motor imagery EEG signals. The
features are firstly clustered iteratively and the cluster
with the required minimum number of support vectors
is selected. The samples that are of minimum distances
to the center of selected cluster are chosen as queries.
When such clusters cannot be found, the samples that
are of maximum distances to a group of support vec-
tors of class “0” and “1” are alternately chosen. The
selection of these high-confidence samples based on it-
erative clustering helps discover the intrinsic data struc-
ture, which ensures robustness of the classifier. Using
BCI competition IV dataset IIb, an increase in the aver-
aged accuracy of 9% is achieved comparing proposed
active with that of a passive learning method, which
demonstrates the effectiveness of the proposed method.
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