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ABSTRACT

This paper investigates how to apply active learning for
the classification of motor imagery electroencephalography
(EEG) signals to boost the performance for small training
size. A new criterion is proposed to select the most repre-
sentative and informative queries. The candidates are firstly
chosen from the samples close to the center of the cluster
that has the highest impurity of classes. A predefined num-
ber of such candidates and classifiers are forwardly buffered.
Subsequently, the query is chosen such that the buffered clas-
sifiers can backward maximize the classification errors on
labeled data. Experimental results conducted on the BCI
competition IV data set IVb show the superior performance
of the proposed active learning scheme, which is on average
5.12% higher in accuracy than that of the passive method by
choosing the training size from 28 to 112.

Index Terms— Active learning, clustering, motor im-
agery EEG signals, cluster impurity, forward-backward error
maximization.

1. INTRODUCTION

Machine learning techniques have been successfully applied
to classify brain signals in brain computer interface, which
provides an effective communication channel between the
paralyzed people and the outside world. The evoked poten-
tial changes of motor imagery can eventually be translated
into commands to operate the external devices [1]-[4]. How
to design an adaptive learning algorithm to fully utilize the
dynamics of the data and the abundant unlabeled data is a
major issue for online implementation [3]. The capability
of achieving good performance for small training set makes
active learning attractive for EEG signal classification. The
goal of active learning is to choose the most informative and
representative samples to boost the performance [5]-[10]. A
general active learning process starts with an initially labeled
data set L={x1, x2, ..., xn} with labels Y ={y1, y2, .., yn},
where Y ∈{0, 1} for two-class classification. Further, there is
an unlabeled data set U={xn+1, xn+2, ..., xn+m}, generally,
n≪m. In each iteration, the learning algorithm will pick a

sample xk, where xk∈U based on certain criteria and asked
the oracle to label the sample. The labeled sample is then
put in set L and removed from set U , i.e., L=L

⋃
{xk} and

U=U\{xk}, where “
⋃

” and “\” denote the “set union” and
“set minus”, respectively. Basically, there are several ways
to select the query samples. Query by uncertainty selects
those samples close to the decision hyperplane of the current
classifier [6][7][8]. Query by committee chooses the samples
which are assigned to different classes by a committee of
classifiers [5][8]. While Query by error reduction chooses
the samples to minimize errors of the new classifiers [9]. To
build an effective classifier for small training set and to fully
utilize the informative unlabeled data, we propose a novel
criterion to select the query samples by combining query by
committee and query by uncertainty. Specifically, a prede-
fined number of candidates are selected from the centers of
those clusters that have the highest impurity in the forward
direction. The same number of the most recently used clas-
sifiers are buffered in the backward direction. Subsequently,
the query sample is chosen such that the classification errors
for the labeled samples by employing the buffered classifiers
can be maximized.

2. PROPOSED METHODS

2.1. Preprocessing: Filtering and Feature Extraction

Let’s denote the EEG signals as S=(sijk)nc×nt×nr , where
nc, nt and nr denote the number of channels, samples and tri-
als, respectively. The time segment of 0.5s to 1.5s from onset
of the visual cue is used. The signal is divided into ns overlap-
ping sub-bands ranging from 4Hz to 36Hz, which is filtered
by an mth order low-pass digital Chebyshev Type II filter to
obtain the band-pass filtered signal: E=(esijk)ns×nc×nt×nr .
The filtered signal is then used to compute Common Spatial
Pattern (CSP) features. CSP decomposes the EEG signal such
that the variances of the new time series are optimal to dis-
criminate the two classes [1][2][4]. Let’s denote Σ1 and Σ2

as the covariance matrices of the band-pass filtered EEG sig-
nal E for the respective motor imagery action.

WTΣ1W = ϖ1 and WTΣ2W = ϖ2 (1)
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where ϖ represents the diagonal. Scaling W such that
ϖ1+ϖ2=I , which can be achieved by solving the gener-
alized eigenvalue problem.

Σ1w = λΣ2w (2)

The large λj corresponds to spatial filter wj that yields high
variance in one motor imagery action and low variance in
another action. Hence, the two task-specific activations can
be differentiated. The resultant filter (wjj)nc×nc is used to
filter the data in each trial for different sub-bands, which
gives Z̃=wT

jjE
nc×nt . The final CSP features are obtained

by F=log(var(Zp)), where Zp are the first and last m rows
of Z̃, m=1 is selected in implementation. This results in
a feature length of lf=ns×2m for each trial. Hence, the
CSP feature vectors for labeled (L) and unlabeled (U ) sets
are Fjl

(nl×lf ) and Fjl
(nu×lf ), respectively, where nl and nu

denote the number of trials for labeled and unlabeled sets and
l=1,2,...,lf . It is worth noting that the samples in this paper
refer to the trials which are represented by feature vectors.

2.2. Proposed Active Learning Scheme

How to choose the query samples is critical in active learning.
In order to build a classifier to include the most informative
and representative samples, we propose a criterion to firstly
choose the candidates based on the cluster impurity and the
distances from the samples to the centers of the selected clus-
ter. Secondly, we buffer a predefined number of candidates
(Ns) that satisfy the criterion, and the most recent Ns classi-
fiers for each candidate in the forward direction. Finally, the
query sample is chosen such that the classification errors us-
ing the buffered classifiers for the labeled set (including the
buffered candidates) are maximized in the backward direc-
tion. The proposed scheme is hence named as “cluster impu-
rity and forward-backward error maximization-based active
learning (CIFBEM-AL)”, which is illustrated in Fig. 1 and
described as follows.

Fig. 1. Our proposed active learning scheme.

1) Cluster the whole set of samples (Fcsp) into Nc clusters
such that the within cluster errors are minimized. K-means

clustering with Nc=4 is chosen. The indexes of the ith cluster
(Ic(i)) are obtained by

Ic(i) = arg min
Cs

Nc∑

i=1

∑

Fcsp(j)∈Cs(i)

||Fcsp(j)− us(i)||2 (3)

where Cs={Cs(1),Cs(2),...,Cs(Nc)} and us(i) denote the to-
tal set of clusters and the sample mean of the ith cluster; j is
the index of the feature vector Fcsp.

2) Calculate cluster impurity using the labeled samples.
The cluster impurity for the ith cluster is calculated by

Pu(i) =
min(Nc0(i), Nc1(i))

max(Nc0(i), Nc1(i))
(4)

where Nc0(i) and Nc1(i) are defined as the number of sam-
ples that belong to the class with label “0” and the class with
label “1” for the ith cluster, which are given by

Nc0(i) =
∑

j∈Ic(i)

(Y |Y (j) = 0)) (5)

Nc1(i) =
∑

j∈Ic(i)

(Y |Y (j) = 1)) (6)

where Y is the class label and obviously Pu(i)∈[0 1] always
holds.

3) Query cluster selection. The criterion for query cluster
selection is defined as

î = arg max
i

(Pu(i)) (7)

The cluster is chosen such that the cluster impurity for the la-
beled samples is the highest. When this is true, the number of
features from two classes are close to each other for labeled
set. Considering the similarity in the feature vectors distribu-
tions of the same cluster for labeled and unlabeled sets, it is
reasonable to assume that the unlabeled samples in the cluster
would be more uncertain.

4) Query sample selection. The sample that is close to the
center of chosen cluster (Cc(̂i)) is chosen as the candidate,
which is given by

m̂ = arg min
m,m∈U

Ds(Cc(̂i),m) (8)

where Ds(Cc(̂i),m) is the distance between the unlabeled
samples (index: m) to the center of the chosen cluster Cc(̂i),
which is given by

Ds(Cc(̂i),m) = Kg(Fcsp(Cc(̂i)), Fcsp(m)) (9)

where Kg() is the Gaussian kernel function, which is given
by Kg(x, y) = e−||x−y||2/2σ2

, where σ=0.25 is chosen in
implementation.

5) Forward-backward classification error maximization.
A total of Ns candidates are forwardly buffered based on
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steps 1 to 4. The same number of classifiers from the most
recent classifiers for each candidate will be buffered as well.
The idea is to choose the most uncertain samples using the
buffered classifiers. Assume the jth buffered classifier for
sample s(k) is f(Sv(i, j), s(k)), which is given by [10]

f(Sv(i, j), s(k)) = sign(
n∑

j=1

yjαjK(Sv(i, j), s(k))) (10)

where K(Sv(i, j), s(k)) is the kernel matrix defining sim-
ilarity between the candidate s(k) and j-th support vector
Sv(i, j); αj and yj are the coefficients and labels of support
vectors in the form of {±1} for ith classifier, respectively.
The query sample q(k̂) is chosen from the forwardly buffered
Ns samples so that the total classification errors on the la-
beled samples including the buffered candidates (L(k)) using
the buffered Ns classifiers are maximized, which are given by

q(k̂) = argmax
k

||
Ns∑

i=1

L(k)∑

m=1

f(Sv(i, j), s(m))− Y ∗(m)||

(11)
where ||x|| gives the absolute value of x, Y ∗(m) is the la-
bel in the form of {±1}. In this way, the chosen sample is
considered to be the most informative and uncertain.

3. EXPERIMENTAL EVALUATION

Experiments are conducted using BCI competition IV data set
IVb, which contains three bipolar recordings (C3, Cz, and C4)
with a sampling frequency of 250Hz. The cue-based screen-
ing paradigm consists of 160 trials for two classes of motor
imagery of left hand and right hand. A small initially labeled
set of size L=6 is chosen as a starting point and the querying
process is iterated for 10 times, the averaged accuracies are
shown in Fig. 2. It can be observed from the figure, the accu-
racy slowly approaches 100%, 92% and 88% for subjects 4, 7
and 5, respectively. It is close to 85% for subject 8, and 80%
for subjects 1, 6 and 9. While the performance for subjects 2
and 3 is not good which is also true for existing approaches.

To show the efficacy of the proposed CIFBEM-AL learn-
ing method, it is compared with a baseline passive learning
method which is similar to our scheme, i.e., a simplified ver-
sion of FBCSP [1] and SWDCSP [2], namely “sFBSWD”.
However, feature selection in FBCSP and discriminant fre-
quency band selection in SWDCSP are not implemented to
have a fair comparison, considering the facts that no selection
of features, frequency bands, channels and time-segments is
employed in our scheme. A total of 10 runs are conducted to
randomly choose the predefined numbers of training samples
to train the classifier, which is subsequently used to classify
the unlabeled samples for sFBSWD. Similarly, 10 runs are
conducted for our proposed CIFBEM-AL, with the compar-
ison of the average accuracies at pre-defined training sam-
ple sizes for sFBSWD and CIFBEM-AL shown in Table 1.

Note that Support Vector Machines (SVMs) with linear ker-
nel is used as the classifier. Considering the facts that the
classifiers are trained using the same number of samples (L),
it is easily seen from the table that active learning can pick
up more informative and representative samples to build the
classifier. This has led to an increase in accuracy of 1.81%,
4.10%, 5.77%, 5.46%, 5.15% and 2.17% for L=14, 28, 56,
84, 112 and 140, respectively, compared with that of passive
learning methods. The improvement is more significant when
training sample size is small, e.g., an average increase in ac-
curacy of 5.12% is achieved for L=28 to L=112. With the
increase of the training samples, the performance of passive
and active learning algorithms tends to be similar, e.g., when
L=140. A paired sample t-test is conducted on the null hy-
pothesis that difference in the accuracies of active and passive
learning methods is a random sample from a normal distri-
bution with mean 0. The null hypothesis is rejected for all
the training sample sizes with p=0.0021, indicating the sig-
nificance of the accuracy increase using active over passive
learning. This not only demonstrates the efficacy of the pro-
posed active learning scheme but also shows its advantages in
boosting the performance when the training data size is small.

4. CONCLUSIONS

In this paper, we investigate the problem of applying active
learning for the classification of the motor imagery EEG sig-
nals in brain computer interface. Specifically, we address the
problem on how to select the most representative and infor-
mative samples to build the classifier such that the perfor-
mance can be boosted when the training sample size is small.
The samples are firstly clustered and the cluster that has high
impurity is selected. The samples that are close to the center
of chosen clusters are selected as the candidates. A predefined
number of candidates and the most recent classifiers are for-
wardly buffered, subsequently, the candidate that can back-
ward maximize the classification errors on the labeled data
is chosen as the query sample. This ensures the uncertainty
and informativeness of the selected query. Experimental re-
sults conducted using BCI competition IV data set IVb show
that on average the resultant accuracy is 5.12% higher than
that achieved using the passive learning algorithm, when the
training data size varying from 28 to 112. This further demon-
strates the effectiveness of proposed active learning method in
boosting the performance for small training data set.
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Fig. 2. The accuracies achieved by proposed CIFBEM-AL algorithm using BCI Competition IV data set IVb for all the subjects.
.
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