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Abstract—Near-Infrared Spectroscopy (NIRS)–based Brain-
Computer Interface (BCI) was recently studied for numerical 
cognition. This study presents a study using high density 348 
channels NIRS-based BCI from 8 healthy subjects while solving 
mental arithmetic problems with two difficulty levels and the rest 
condition. The existing feature extraction and selection methods 
on the existing study were presented only for low density 16 
channels NIRS-based BCI, and required the specification on the 
number of features to select to yield desirable performance. This 
paper presents a method of extracting discriminative features 
from high density single-trial NIRS data using common average 
reference spatial filtering and single-trial baseline reference, and 
a method of automatically selecting a set of discriminative and 
non-redundant features using the Mutual Information-based 
Rough Set Reduction (MIRSR) and Supervised Pseudo Self-
Evolving Cerebellar (SPSEC) algorithms. The performance of 
the proposed method is evaluated using 5×5-fold cross-
validations on the single-trial NIRS data collected using the 
support vector machine classifier. The results yielded an overall 
average accuracy of 71.4% and 91.0% in classifying hard versus 
easy tasks and hard versus rest tasks respectively using the 
proposed method, compared to 46.1% and 62.2% respectively 
using existing methods. The results demonstrated the 
effectiveness of using the proposed feature extraction and 
selection method in high density NIRS-based BCI for assessing 
numerical cognition.  

Keywords–Brain-Computer interface; near-infrared 
spectroscopy, mental arithmetic; feature extraction; feature 
selection. 

I.  INTRODUCTION 

Studies have investigated the neural correlates of arithmetic 
and numeric processing using functional magnetic resonance 
imaging (fMRI) [1]. However, fMRI-based studies are costly, 
and the physical restrictions of the fMRI scanner limit its 
usability to laboratory and clinical facilities. Alternatively, 
Near-Infrared Spectroscopy (NIRS) is a non-invasive optical 
neural imaging technique that measures concentration changes 
of oxyhemoglobin (HbO2) and deoxyhemoglobin (Hb) in the 
cerebral vessels by means of different absorption spectra in the 
near infrared range [2]. Compared to fMRI, NIRS 
instrumentation is relatively smaller, more portable, and less 
expensive to purchase and maintain [3]. For these reasons, 
NIRS is ideally suited for the development of portable real-
time brain signal measuring device, known as a brain-computer 
interface (BCI), which allows the direct translation of brain 
signals into commands for controlling an external device [4]. 

The feasibility of using NIRS-based BCI to discriminate 
left and right motor imagery from hemodynamic responses was 
first demonstrated in [5], and later in [6], [7]. Subsequently, 
studies have also shown that other cognitive tasks, such as 
performing mental arithmetic, generally cause an increase of 
oxyhemoglobin associated with decreases of deoxyhemoglobin 
in the prefrontal cortex [8]. Recently, the feasibility of using a 
low density 16 channels NIRS-based BCI for assessing level of 
numerical cognition had been demonstrated in [9]. 

The previous study in [9] collected NIRS data from 20 
healthy subjects who performed 3 difficulty levels of mental 
arithmetic tasks. The subjects performed two 1-digit additions 
for the easy tasks, 1-digit and 2-digits additions for the medium 
tasks, and two 2-digits additions for the hard tasks. A total of 
75 trials of mental arithmetic tasks evenly distributed into the 3 
difficulty levels were collected from each subject. However, 
the data were collected such that 5 trials of the same difficulty 
level formed a block, and a total of 15 randomized blocks were 
collected from each subject in consideration of the slow 
hemodynamic responses. This experimental design inherently 
included correlated single-trials in each block. The previous 
study also presented a simple method of extracting the features 
by taking the averaged changes in oxyhemoglobin and 
deoxyhemoglobin across 12 s of NIRS data recorded for a 
single trial, and results were presented using 55-fold cross-
validations on the 75 single-trials of NIRS data collected. In 
addition, the feature selection method in the previous study 
required the specification on the number of features to select in 
order to yield desirable performance. 

This paper presents a study of high density 348 channel 
NIRS-based BCI for assessing the level of numerical cognition 
in subjects performing mental arithmetic tasks. The 
motivations of conducting this study compared to the previous 
study [9] are: Firstly, to address the issue on correlated single-
trials of mental arithmetic tasks executed in blocks of 5 trials in 
the previous study. Secondly, to investigate the effectiveness of 
a high density NIRS-based BCI for assessing numerical 
cognition compared to low density NIRS-based BCI in the 
previous study. Thirdly, to investigate the effectiveness using 
the simple feature extraction method from the previous study in 
a high density NIRS-based BCI. Last but not least, to 
investigate improved feature extraction and computational 
intelligent feature selection method to extract and select 
discriminative features in high density NIRS-based BCI, as 
well as to address the issue on the need to specify the number 
of features to select in the existing feature selection method. 
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II. METHOD 

This section describes the experiment that used high density 
NIRS-based BCI for assessing numerical cognition, the 
computation of the hemodynamic responses from the data, the 
feature extraction and selection method used in the previous 
study [9], and the proposed feature extraction and selection 
method used in this study. 

A. NIRS data collection 

The NIRS data were collected from 8 healthy subjects (3 
females, mean age 28.68.38) recruited from staffs and 
students of the Brain-Computer Interface laboratory in the 
Institute for Infocomm Research, A*STAR. All subjects were 
fully informed, and consented to participate in the study. 

The NIRS data were collected using the DYnamic Near-
Infrared Optical Tomography (DYNOT) Imaging System 
(NIRx Medizintechnik GmbH, Berlin, Germany) with two 
wavelengths (λ = 760 & 830 nm) using 32 co-located optodes, 
each serving as source and detector, on the prefrontal cortex of 
the subject’s head as shown in Fig. 1(a). The optodes were 
fixed on the prefrontal cortex using an open scaffolding 
structure with individually spring-loaded fibers to ensure stable 
optical contact. The setup measured 32 channels from 32 
detectors for each source for each wavelength, which yielded a 
total of 1024 channels for each wavelength. Since not all 
channels contained useful data, only those channels with 
source and detector distances between 1.5 to 3.5 cm measured 
using the Xensor digitizer were used, yielding a total of 348 
data channels for each wavelength. 

 

 
(a) (b) 

Fig. 1.(a) NIRS data were collected using a fiber grid with 32 co-located 
sources and detectors over the prefrontal cortex. (b) NIRS data collection 
setup whereby the numerical arithmetic question was presented to the subject 
on the screen and the answer was captured using a keyboard. 

B. Experimental Protocol 

During the NIRS data collection experiment, the subjects 
were seated in a comfortable chair in a room with normal 
lighting. They were asked to relax before the collection. They 
were also asked to minimize movement and to respond as 
quickly and as correctly as possible during data collection. 

The subjects underwent a total of 40 trials of mental 
arithmetic tasks that were evenly distributed into 2 difficulty 
levels of easy and hard. Each trial comprised of 3 numerical 
arithmetic questions from the same difficulty level. The 
subjects performed mental additions of 3-digits number with 2-

digits number without carryover for the easy tasks (eg. 543 + 
12), and additions of 4-digits numbers with 3-digits with at 
least 1 carry over (eg. 5432 + 612) for the hard tasks. At the 
start of each trial, a question was displayed for a maximum of 
12 s. The next question was displayed immediately if the 
subject responded within 12 s, or at the end of 12 s. A period of 
20 s of rest was given between each trial. If all the 3 questions 
from a trial were correctly answered, then the trial was 
considered correct. 

C. NIRS data preprocessing 

Let the optical density for wavelength  from a source and 
detector channel c be denoted as ODc

 , the normalized change 

in optical density denoted as ODc


  was first computed by 
dividing each time sample with the mean of the optical signal 

acquired for the entire session. Next, ODc


  was low-pass 
filtered using Chebychev type II filter with a cut-off frequency 
of 0.14 Hz and pass-band attenuation of 0.02 dB. 
Subsequently, linear-detrending was performed to remove the 
drift (low frequency bias) in the NIRS data due to various 
reasons, such as subject movement, blood pressure variation, 
and instrumental instability [10]. After filtering and detrending, 
unity was added to bring the mean of the optical density to 
unity instead of zero. The optical density changes were denoted 
as ODc

  after these preprocessing steps. 

D. Computing hemodynamic responses 

The optical density changes ODc were expressed as a 
linear combination of the changes in oxyhemoglobin [HbO2]c 
and deoxyhemoglobin [Hb]c using the modified Beer-
Lambert law (MBLL) [2], [11] given by 

     
2Hb HbO 2OD DPF Hb + HbOc c c

L         , (1) 

where  is the wavelength-dependent extinction coefficient, 
L is the path length from source to detector, and DPF is the 
differential path-length. In this study, the values of  are 
obtained from [12], and DPF = 6.3 and 6.0 are used for λ = 
760 and  830 nm respectively. 

The optical density changes from the two wavelength were 
converted to changes in HbO2 and HB by solving [6] 


 
   
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E. Previous feature extraction method 

The feature extraction method in the previous study [9] was 
performed by taking the average [HBO2]c across a time 
segment T of NIRS data recorded for a single trial given by 

      2 2

0

1
HbO HbO

T

c c
t

T
   , (4) 

and the average of [HB]c can be similarly performed. The 
extracted feature vector for the ith trial was then formed using  

        2 21 1
HbO HbO Hb Hb

c c
i n n

      x   , (5) 

where 1 tn
i

x  , i=1,2,…,nt; nt denotes the total number of 

trials in the training data, and nc denotes the total number of 
channels for each wavelength. 

The feature matrix for the training data was then formed 

using 1 2 t

T

n
   X x x x . 

F. Previous feature selection method 

Feature selection is a process defined as: given a set of d 
features, select a subset of size k that leads to the smallest 
classification errors [13]. In the previous study [9], the feature 
selection is performed using the mutual information criteria 
defined as: given an initial set  with d features, find the subset 

 with k features that maximizes Mutual Information I(;) 
[14]. However, the computation of the mutual information on 
the features selected is often computationally prohibitive. 
Hence a suboptimal and computationally efficient method, 
such as Mutual Information based Best Individual Feature 
(MIBIF) algorithm [15], [16], is used in [9]. The use of the 
MIBIF algorithm, which is described in the following, required 
the specification of k, the number of features to select. 

MIBIF Algorithm 

 Step 1: Initialization 

Initialize set of d features  1 2, , d f f f , set of selected 

features   . 

 Step 2: Compute the MI of features with the output class 

Compute  ; 1.. ,i iI i d  f f  .  

 Step 3: Select the best k features 
Repeat 

Select the feature fi that maximizes  ;iI f   using 

       
1.. ,

\ , | ; max ;
j

i i i j
j d

I I
 

   
f

f f f f


      . (6) 

Until k  

Given a d-dimensional feature data  1 2, , d f f f , 

whereby fj=[fj,1, fj,2, … fj,n], n is the number of training data 
samples; the Mutual Information (MI) between the features 
that are continuous and the class labels that are discrete is 
given as  

      ; |I H H      , (7) 

where ={1,2…,n}. The entropy of the class  is 

      2
1

log
n

H P P




 


  , (8) 

and the conditional entropy of a feature fj can be estimated 
using [17]  

      , 2 ,
1 1

1ˆ ˆ ˆ| | log |
tn n

j j i j i
it

H p f p f
n





 
 

  f , (9) 

where fj,i is the ith trial sample of the jth column of , and the 

probability distribution function  ,ˆ | j ip f  can be estimated 

using Parzen Window [17], [18]. The conditional entropy of 
more than one features s can be estimated using Equation (9) 
and a multivariate estimate of  ˆ | ip  s . 

G. Existing feature selection method 

A more optimal and less computationally efficient feature 
selection method exists, such as, the Mutual Information-based 
Sequential Feature Selection (MISFS) algorithm [14]. The 
MISFS algorithm is described in the following: 

MISFS Algorithm 

 Steps 1 & 2: Initialize and compute MI of features 
Same as steps 1 & 2 of the MIBIF algorithm. 

 Step 3: Select the first feature 

Select the feature fi that maximizes  ;iI f   using (6). 

 Step 4: Greedy selection 
Repeat 

a) Compute  ; 1.. ,i iI i d   f f   , the joint MI 

between the feature i and selected features with the 
output class. 

b) Select next feature using 

 

   
   

1.. ,

\ , |

; max ; .
j

i i

i j
j d

I I
 

  

  
f

f f

f f


   

   
 (10) 

Until     ; 1k I      
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H. Proposed CAR-SBR feature extraction method 

NIRS signals are often contaminated by noise and artifacts 
of both physical and physiological origin, such as subject’s 
movement, heartbeat, respiration effects and other trends [19]. 
The filtering and detrending performed in section II.C might 
not be sufficient to remove all the noise and artifacts. 
Therefore, the Common Average Reference (CAR) Spatial 
Filtering, commonly used in EEG-based BCI [20], is proposed 
to reduce noise and artifacts that are common in all the 
channels. The CAR method was performed on [HBO2]c using 

            2 2 2
1

1
HbO HbO HbO

cn

c c c
jc

t t t
n 

     , (11) 

and CAR was similarly performed on [HB]c.  

After performing CAR, Single-trial Baseline Reference 
(SBR) is proposed to reduce noise and artifacts in each 
specific channel. The SBR method was performed on 
[HBO2]c using 

          
2

2 2 2

/2 0

2
HbO HbO HbO

TT

c c c
T

t t
T

 
      

 
  , (12) 

and SBR on [HB]c was similarly performed. The proposed 
SBR method first computes the baseline reference for a single 
trial from the average of the first half of the time segment T, 
then subtracts this baseline reference from the next half of the 
time segment for [HBO2]c and [HB]c  respectively. The 
extracted feature vector for the ith trial is then formed using 
equation (4) whereby [HBO2]c and [HB]c are computed 
from equation (12). 

I. Proposed MIRSR feature selection method 

In order to select discriminative and non-redundant 
features, as well as to address the requirement on the number of 
features to select, the following Mutual Information-based 
Rough Set Reduction (MIRSR) algorithm [16] is used. 

MIRSR Algorithm 

 Step 1: Generation of fuzzy membership functions 

Given n data  1, ,i d f f f   with d features, generate 

fuzzy membership functions of feature fi using the 
Supervised Pseudo Self-Evolving Cerebellar (SPSEC) 
algorithm [21] i=1..d. 

 Step 2: Compute the MI of features   with the class  

For i=1..d: 

a) Given features  ,1 , ,, ,i i i k i nx x xf    with n data 

samples, perform classification of each data xi,k using 

 
 , , , , ,

1..
| max

i
i k i j i j i j i k

j J
p x  


  , (13) 

where pi,j is the class associated with the membership 
function i,j; Ji is the number of membership functions 
generated for feature i. 

b) Estimate  | ip  f  using 

 ˆ ˆ| i i ip n n f , (14) 

where ˆin is the number of correct classification ,
ˆ

i k   

k=1..n. 

c) Compute the conditional entropy using (15) and 
subsequently  ;iI f   using (7) and 

 
     2

1

ˆ ˆ| | log | .
cN

i i iH p p


 


 f f f  (15) 

End for 

 Step 3: Select best k features 
Same as MIBIF step 3 using k=2 log2d in (6). 

 Step 4: Remove redundant attributes 
Remove membership functions that are not selected from 
step 3 and perform reduction using RSPOP step 2 [22]. 

In step 1 of the MIRSR algorithm, the SPSEC algorithm 
[21] is used to first generate the fuzzy membership functions of 
each individual features. In step 2, the fuzzy membership 
functions generated are then used to perform a classification of 
the data to estimate the conditional entropy and subsequently 
the mutual information of each individual feature.  In contrast, 
the MIBIF and MISFS algorithms estimate the conditional 
entropy and subsequently the mutual information of the 
features from the probability distribution functions estimated 
using Parzen Window. In step 3, the MIBIF algorithm is used 
to select a small subset of best k features, and then the RSPOP 
algorithm is used in step 4 to perform reduction on these 
selected best features (see RSPOP Attribute Reduction in [22] 
for a more detailed description). 

J. Classification 

After feature selection was performed to select 
discriminative features on the training data, the Support Vector 
Machine (SVM) classifier [23] was used to classify the 
selected features.  

III. EXPERIMENTAL RESULTS 

This section presents the experimental results on the 
performance of the NIRS-based BCI evaluated using 55-fold 
cross-validations in the classification of the single-trial high 
density NIRS data on easy versus hard (EvH) tasks, easy 
versus rest (EvR) tasks, and hard versus rest (HvR) tasks. The 
time segment T for classifying the EvH tasks was computed for 
each subject based on the average time taken to answer all the 
3 arithmetic questions in a single trial. The time segment of a 
fixed T=14 s was used for classifying EvR and HvR tasks. 
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Table 1. Experimental results on the number of correct trials answered by the subjects, and 55-fold cross-validations accuracies in classifying the single-trial 
high density NIRS data on Easy versus Hard (EvH), Easy versus Rest (EvR), and Hard versus Rest (HvR) tasks using the Support Vector Machine (SVM) 
classifier. The classification accuracies of using previous feature extraction method [9] and MIBIF to select 10 out of 686 extracted features are compared to using 
the proposed Common Average Reference and Single-trial Baseline Reference (CAR-SBR) feature extraction method and the MIBIF to select 10 features. The 
results of using the proposed feature extraction method are also presented using MIBIF to select 12 features, using existing MISFS algorithm, and using the 
proposed MIRSR algorithm. 

 
 

Table 1 shows the number of trials whereby all 3 questions 
were correctly answered by the subjects, and the 5×5-fold 
cross-validation classification accuracies obtained using:  

1. the previous feature extraction method in [9] described 
in section II.E and the previous MIBIF feature 
selection method described in section II.F to select 
k=10 features (denoted ‘Previous FE & MIBIF 10 
FS’), 

2. the proposed CAR-SBR feature extraction method 
described in section II.H and MIBIF to select 10 
features (denoted ‘CAR-SBR FE & MIBIF 10 FS’), 

3. the proposed CAR-SBR feature extraction method and 
MIBIF to select an increased number of 12 features 
(denoted ‘CAR-SBR FE & MIBIF 12 FS’), 

4. the proposed CAR-SBR feature extraction method and 
the existing MISFS algorithm described in section II.G 
to automatically select a set of features (denoted 
‘CAR-SBR FE & MISFS FS’), 

5. and the proposed CAR-SBR feature extraction and the 
proposed MIRSR algorithm described in section II.I to 
automatically select a set of discriminative features 
(denoted ‘CAR-SBR FE & MIRSR FS’).  

The results showed that the classification of the EvH tasks 
using the feature extraction method in [9] yielded an averaged 
accuracy of 46.1% across the 8 subjects. This is in contrast 
with the result of 69.8% presented in [9] because the study in 
[9] was performed on 16 channel low density NIRS-based BCI. 
Thus the previous feature extraction method in [9] was not 
effective in high density NIRS-based BCI, and that the NIRS 
data from trials in the same block in [9] were correlated. 

The results also showed that the classification of EvH tasks 
on features extracted using the proposed CAR-SBR method 
yielded significantly improved averaged accuracies of 72.6% 
compared to 46.1% using the method in [9] (p=0.0006  using 
paired two-tail t-test). Furthermore, the results on the 

classification of the HvR tasks and the EvR tasks on features 
extracted using the proposed CAR-SBR method also showed 
significantly improved averaged accuracies of 92.2% and 
76.9% compared to 62.2% and 48.6% respectively using the 
method in [9] (p=0.0006, 0.0001). Hence the result showed that 
the proposed CAR-SBR feature extraction method yielded 
significant improvements over the previous feature extraction 
method.  

However, the results showed that the classification of the 
EvH tasks using the proposed CAR-SBR feature extraction 
method and MIBIF to select 12 features yielded a deteriorated 
accuracy of 69.1% compared to the use of MIBIF to select 10 
features, although it was not statistically significant (p=0.078 
using paired one-tail t-test).  Hence the result showed that the 
use of the previous MIBIF feature selection algorithm required 
the specification on the number of features to select in order to 
yield good classification performance. This motivated the use 
of other feature selection algorithms that do not require the 
specification on the number of features to select. 

On the other hand, the results showed that the classification 
of the EvH tasks using the proposed CAR-SBR feature 
extraction method and MISFS to select a set of features also 
yielded significantly deteriorated accuracy of 68.3% compared 
to the use of MIBIF to select 10 features (p=0.0035 using 
paired one-tail t-test). Hence the results showed that although 
the use of existing MISFS feature selection algorithm did not 
require the specification on the number of features to select, it 
did not yield good performance compared to the use of the 
MIBIF feature selection algorithm. This motivated the 
investigation of more advanced feature selection algorithms. 

Last but not least, the results showed that the classification 
of the EvH tasks using the proposed CAR-SBR feature 
extraction method and the proposed MIRSR algorithm to select 
a set of discriminative and non-redundant features yielded 
accuracy of 71.4%, which is significantly better than the use of 
the MISFS algorithm (p=0.038 using paired one-tail t-test). 
Although this results is not significantly different from the use 
of the existing MIBIF feature selection algorithm to select 10 

Correct
Subjects Trials EvH EvR HvR EvH EvR HvR EvH EvR HvR EvH EvR HvR EvH EvR HvR

1 32 34.0 37.0 39.5 59.5 59.5 84.0 57.5 57.0 73.5 57.5 64.5 79.5 69.0 66.5 81.5
2 23 55.0 64.5 71.0 71.0 97.5 95.0 68.0 94.0 96.0 70.5 86.5 92.0 70.5 92.0 92.5
3 28 60.0 84.5 82.0 74.0 100.0 96.0 73.0 100.0 97.5 72.5 100.0 97.0 76.5 99.5 96.5
4 33 57.5 45.0 78.5 73.5 80.5 97.0 76.5 77.5 98.0 69.5 71.5 95.5 70.5 76.0 97.0
5 24 36.0 45.0 54.0 78.5 59.5 84.0 77.5 59.5 83.0 70.5 50.0 79.5 69.0 57.0 83.5
6 30 32.0 34.0 42.0 72.0 61.0 96.0 66.0 59.5 94.0 64.0 56.0 89.5 65.0 60.0 92.5
7 35 44.5 41.5 69.0 61.0 74.0 85.5 43.0 78.0 84.0 52.5 72.0 81.0 59.5 74.0 85.5
8 31 50.0 37.0 61.5 91.5 83.5 100.0 91.0 86.0 100.0 89.0 79.5 99.5 91.0 83.5 99.0

Average 46.1 48.6 62.2 72.6 76.9 92.2 69.1 76.4 90.8 68.3 72.5 89.2 71.4 76.1 91.0

Previous FE [9] CAR-SBR FE CAR-SBR FE CAR-SBR FE CAR-SBR FE

 & MIBIF10 FS & MIBIF10 FS & MIBIF12 FS & MISFS FS & MIRSR FS
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features (p=0.561 using paired two-tail t-test), the use of the 
MIRSR algorithm does not require the specification on the 
number of features to select. Thus the unbiased result of using 
the MIRSR algorithm is comparable to biased results of using 
the MIBIF algorithm whereby the better classification accuracy 
could be determined from various selection on the number of 
features to select. 

IV. CONCLUSIONS 

This paper presents a method of extracting discriminative 
features from high density NIRS-based BCI using Common 
Average Reference spatial filtering and Single-trial Baseline 
Reference (CAR-SBR), and a method of selecting a set of 
discriminative features using the Mutual Information-based 
Rough Set Reduction (MIRSR) algorithm. A study was 
performed to collect a high density 348 channels of NIRS data 
for each wavelength from the prefrontal cortex of 8 subjects in 
performing two difficulty levels of mental arithmetic tasks and 
the rest condition.  

The results showed that previous feature extraction method 
for low density NIRS-based BCI was not effective for the high 
density NIRS-based BCI for assessing numerical cognition. 
Although the use of the proposed CAR-SBR feature extraction 
method improved upon the previous method, the use of the 
previous Mutual Information-based Best Individual Features 
(MIBIF) feature selection algorithm required the specification 
on the number of features to select. Hence the classification 
results were biased since the number of features that yielded 
better results was presented. However, the results showed that 
the use of existing Mutual Information-based Sequential 
Feature Selection (MISFS) algorithm that could automatically 
select optimal number of features did not yield comparable 
performance compared to the MIBIF algorithm. Nevertheless, 
the results showed that the use of the proposed Mutual 
Information-based Rough Set Reduction (MIRSR) algorithm 
yielded improved results compared to the MISFS algorithm, as 
well as comparable results to the biased MIBIF algorithm that 
selected 10 features. 

Hence the results demonstrated the effectiveness of using 
the proposed feature extraction and selection methods in high 
density NIRS-based BCI, as well as the application of such a 
BCI to provide a feedback on the level of numerical cognition. 
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