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Abstract— Brain-computer interface (BCI) as a rehabilitation
tool has been used in restoring motor functions in patients
with moderate to sever stroke impairments. To achieve the best
possible outcome in such an application, it is highly desirable
to have a stable and accurate operation of BCI. However, since
electroencephalogram (EEG) signals considerably vary between
sessions of even the same user, typically a long calibration
session is recorded at the beginning of each session. This process
is time-consuming and inconvenient for stroke patients who
undergo long-term BCI sessions with repeating same mental
tasks. This paper investigates the possibility of omitting the
intra-session calibration for BCI-based stroke rehabilitation
when large data recorded from the same user are available.
For this purpose, a large dataset of EEG signals from 11 stroke
patients performing 12 BCI-based stroke rehabilitation sessions
over one month is used. Our offline results suggest that after
recording a number of stroke rehabilitation sessions, the patient
does not require calibration any more. The experimental results
show that combining 11 sessions, which each session comprises
minimum 60 trials per class, yields a model that averagely
outperforms the standard calibration model trained by the data
recorded directly before the test session.

I. INTRODUCTION

Brain-computer interface (BCI) provides a nonmuscu-

lar means of communication and controlling a device [1].

Through voluntary motor imaginations or movement inten-

tions, brain activities can be decoded to controlling signals.

Thus, BCI technology enables people with sever motor

disabilities to use their brain signals for communication and

control [2]. Furthermore, as a rehabilitation tool BCI has

been effectively used in restoring motor functions in patients

with moderate to sever stroke impairments [3]. In such a

system, BCI could guide brain plasticity by demanding close

attention to a motor task or by requiring the activation or

deactivation of specific brain signals.

In majority of current BCI systems, the brain signals

are measured by EEG, due to its low cost and high time

resolution [4]. Since, the EEG patterns considerably vary

between sessions even for a same subject, the motor imagery-

based BCI typically requires to record labelled training data

during a so called calibration phase at the begin of each
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session. The calibration phase takes around 20-30 minutes,

and its acquired data are used to train a BCI model adapted

to the subject’s current EEG patterns. This time-consuming

preparation step is especially inconvenient for patients who

are long-term BCI users. Therefore, the question arises

whether we can omit the time-consuming calibration phase.

In the other words, is it possible to use the recorded data from

the previous sessions of the same subject to train a stable BCI

model that can be reliably used in follow-up sessions?

Krauledat et al. recently proposed an algorithm to skip the

calibration phase of long-term BCI users by concatenating

and clustering the historic spatial filters of the same user

[5]. The previous findings in [5] were further confirmed in

an online study published in [6]. More recently, Fazli et al.

proposed a method to omit the calibration phase for long-

term and novel subjects by an ensemble of historic sessions

[7].

While stroke patients are potential audiences of BCI who

repeatedly perform BCI sessions with same mental tasks,

all the aforementioned studies focused only on healthy and

expert BCI subjects. To the authors’ knowledge, so far there

are no studies investigating the stability and robustness of a

stroke rehabilitation system without an intra-session calibra-

tion. fMRI and PET studies on stroke rehabilitation revealed

dynamic changes in the activation patterns during recovery

[8]-[10]. Therefore, the reliability of transferring information

from prior BCI-based stroke rehabilitation sessions needs to

be investigated.

This study aims to investigate whether combining different

stroke rehabilitation sessions of a same subject allows us to

reveal the ”invariant” BCI features. For this purpose, a 12

sessions motor imagery-based BCI dataset collected from 11

stroke patients over one month [3], [11] is used. In this

study, the Filter Bank Common Spatial Pattern (FBCSP)

algorithm which is the basis of all wining algorithms in BCI

competition IV is applied to train the subject-specific models

[12], [13]. We show how many data from different sessions

are required to train a good classifier which eliminates the

necessity of going through an intra-session calibration for

a new session. Moreover, the trained model by the historic

data is tested against the standard model trained by the data

recorded directly before the test session.

The remainder of this paper is organized as follows:

Section II briefly describes the FBCSP algorithm. The ap-

plied dataset and the performed experiments are explained

in Section III. Section IV presents the experimental results

and finally Section V concludes the paper.
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II. METHODOLOGY

A. Filter Bank Common Spatial Pattern

The common spatial pattern (CSP) algorithm has been

shown to be effective in discriminating two classes of motor

imagery tasks [14]. Despite its effectiveness and widespread

use, the CSP performance greatly depends on its operational

frequency band [14], [15]. The FBCSP algorithm addresses

this issue by performing consecutively multi-band spectral

filtering and common spatial filtering to extract and select

most discriminative features.

Due to its superior performance against CSP, this study

used the filter bank common spatial pattern (FBCSP) algo-

rithm [12], [13]. The FBCSP methodology comprises the

following steps:

Step 1) Multi-band spectral filtering: The first step uses

a filter bank that decomposes the EEG data using nine

equal bandwidth filters, namely 4-8, 8-12, ..., 36-40 Hz as

proposed in [12], [13]. These frequency ranges cover most

of the manually or heuristically selected settings used in the

literature.

Step 2) common spatial filtering: In this step, the EEG

data from each frequency band are spatially filtered using

CSP filters [14]. Let Xb∈R
Nc×S denote a single-trial EEG

data from the bth band-pass filter, where Nc and S denote

the number of channels and number of measurement samples

respectively. A linear projection transforms Xb to spatially

filtered Zb as

Zb = w
∗

b
Xb, (1)

where each row of the transformation matrix w
∗

b
∈R

2m×Nc

indicates one of the 2m CSP filters.

The CSP transformation matrix corresponding to the bth

band-pass filter, Wb, is generally computed by solving the

eigenvalue decomposition problem:

Cb,1Wb = (Cb,1 +Cb,2)WbD, (2)

where Cb,1 and Cb,2 are respectively the averaged covariance

matrices of the band-passed EEG data of each class; D is

the diagonal matrix that contains the eigenvalues of (Cb,1 +
Cb,2)

−1
Cb,1. Usually, only the first and last m rows of Wb

are used as the most discriminative filters to perform spatial

filtering [14].

Step 3) Feature extraction: The spatio-spectrally filtered

EEG data are used to determine the features associated

to each band-pass frequency range. Based on the Ramoser

formula [16], the features of the kth trial of the EEG data

from the bth band-pass filter are given by

vb,k = log(diag(Zb,kZ
T

b,k)/trace[Zb,kZ
T

b,k]), (3)

where vb,k ∈R
1×2m; diag(.) returns the diagonal elements

of the square matrix; trace[.] returns the sum of the diagonal

elements of the square matrix; and the superscript T denotes

the transpose operator. Since we have nine frequency bands,

the feature vector for the kth trial is formed using

Vk = [v1,k,v2,k, ...,v9,k]. (4)

where Vk∈R
1×18m.

Step 4) Feature selection: The last step selects the most

discriminative features of the feature vector V. Various

feature selection algorithms can be used in this step. Based

on the results presented in [12] the Mutual Information-

based Best Individual Feature is used to select four pairs

of features.

III. EXPERIMENTS

A. Data Description

In this study, the EEG data from 11 hemiparetic

stroke patients who underwent motor imagery-based BCI

with robotic feedback neuro-rehabilitation were used (refer

NCT00955838 in ClinincalTrials.gov) [3]. Each patient un-

derwent 12 sessions of 1-hour neuro-rehabilitation on the

stroke-affected hand for one month. Table I provides more

clinical information about the 11 stroke patients.

TABLE I

DEMOGRAPHIC AND CLINICAL INFORMATION FOR N=11 STROKE

SUBJECTS WHO PARTICIPATED IN THIS STUDY

Stroke
Gender Handedness Type Side Nature Mean CVA to Week 0

M/F R/L I/H R/L C/S age therapy days FMA
(%) (%) (%) (%) (%) (Range) (Range) (Range)

9M 10R 5I 6R 3C 47.5±13.5 383±291 26.3±10.3
(81.8) (90.9) (45.5) (54.5) (27.3) (23-61) (71-831) (17-47)

M indicates Male; F, Female; R, Right; L, Left; N, None; I, Infarction; H,
Haemorrhagic; C, Cortical; S, Subcortical; CVA, Cerebrovascular accident;

FMA, Fugl- Meyer Assessment; N, Number of patients.

In the rehabilitation phase, the patient’s impaired hand

was strapped to the MIT-Manus robot. Thus, when a suc-

cessful motor imagery task was completed, the MIT-Manus

robot passively moved the stroke-affected limb. The EEG

signals were acquired using Nuamps acquisition hardware

(http://www.neuroscan.com) with 27 unipolar Ag/AgCl elec-

trodes channels, digitally sampled at 250 Hz with a resolution

of 22 bits for voltage ranges of 130 mV. The recorded EEG

signals were band-pass filtered from 0.05 to 40 Hz by the

acquisition hardware.

Fig. 1 shows the timing for the rehabilitation session. In

each trial the patient was first prepared with a visual cue for

2 s, then a go cue instructed the patient to perform motor

imagery of the impaired hand. If the voluntary motor intent

was detected within the 4 s action period, the MIT-Manus

robot assisted the patient to move the impaired hand towards

the goal. Finally the patient was asked to rest for 6 s. Each

patient underwent 12 neuro-rehabilitation sessions, 3 sessions

per week. There was a total of 160 repeats in each session

(1 repeat means a complete run from preparation cue to the

rest stage). There was a dedicated calibration phase before

the rehabilitation phase to train the online classifier.

B. EEG signal processing

In our study, the classification problem involved distin-

guishing between the motor imagery stage and the rest

stage. Therefore, each session comprised 160 motor imagery

actions of the affected hand and 160 rest conditions. The rest
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Fig. 1. Timing of each repeat in the performed neuro-rehabilitation phase
with on-line robotic feedback.

class is a ”no-command” state that the patients were allowed

to do almost any other mental tasks than the impaired hand

motor imagery. There were a total of 12 sessions of BCI data

recorded on different days for each patient.

An overview of the performed experiments are shown

in Fig. 2 and Fig. 3. These experiments aimed to evaluate

the performance of a model trained using the other stroke

rehabilitation sessions of the same subject, and compare it

against the standard model trained on a part of the new

session.

In the first experiment, as shown in Fig. 2, we trained

models using different portions of 11 sessions (m% which

m varies from 2.5 to 100), and tested on the second half of

the test session. Since we assumed that the collected sessions

of a subject are independent, in each run a session (from the

12 available sessions of a subject) was considered as the

test session and the rest of 11 sessions were used to train

a model. The model was trained using different numbers of

trials selected equally and randomly from each session. This

experiment investigated whether combining different stroke

rehabilitation sessions of a same subject recorded over one

month allows us to reveal stable BCI models. Moreover,

this experiment considered that how many trials from each

session are required to train a stable model for a BCI-based

stroke rehabilitation application.

Fig. 2. First experiment: A model is trained using data from 11 sessions
and tested on the second half of a new session.

Fig. 3. Second Experiment: A model is trained using the first half of a
session and tested on the second half of the same session.

To investigate how well the trained model from the 11

sessions performed on the second half of the new session,

the obtained classification accuracies were compared with

the classification results of the model trained from the first

half of the new session. Thus, in the second experiment, as

shown in Fig. 3, the first half of each session was used as

the calibration data to train a model.

In all the experiments, the EEG data from 0.5 to 2.5 s

after the cue were extracted and filtered using 9 band-pass

Chebyshev Type II. Then, the CSP filtering was performed

in each band, and a reduced set of features from all the

bands was selected using the Mutual Information-based Best

Individual Feature algorithm [2]. It is noted that in this study,

for each applied CSP, two pairs of filters were used, and for

all the mentioned algorithms the LDA classifier was applied

in the classification step.

IV. RESULTS AND DISCUSSION

This section investigates the possibility of omitting the

calibration phase if we have 11 sessions recorded over a

month from a same user. In the first step, the second half

of each session of a subject was considered as the test data,

and all the data from the other 11 sessions were used as

the train data. We aimed to know whether a big amount

of data recorded over one month can capture most of the

variabilities in the data and make a model working well on

the data recorded in a new session. For comparison purpose,

in the second step, for each session, the first half of the data

were used for training a model and subsequently the second

half of the data were used for testing. Since in this step the

train (calibration) and test data were recorded one after the

other in a same day, we expected to have less variabilities

between the train (calibration) and the test data. Thus, the

classification accuracies of these models are considered as

the baseline, and compared with the classification accuracies

obtained by the models trained from the other 11 sessions

(see Fig. 4).

Fig. 4. Comparing performances of the models trained by different train
data. Blue bars show the classification accuracies obtained by the models
trained using the data recorded directly before the test data. The red bars
show the classification accuracies obtained by the models trained using 11
sessions data recorded in different days rather than the test day.

Fig. 4 shows that using 2 ∗ 160 ∗ 11 = 3432 trials from

other sessions recorded over one month can provide a good

model which is stable against the variabilities in the new

session. Interestingly, the models trained from the 11 sessions

outperformed the models trained from the data recorded

instantly before the test session by an average of 2.1%. More

interestingly, statistical t-test on all the classification results

showed that for 4 subjects (P003, P034, P047, P050) the

model obtained by the data from 11 sessions significantly

performed better than the model obtained from the data

recorded just before the test data. For the 7 remaining
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subjects there is no statistically difference between the results

of these two groups of the models.

The results presented at Fig. 4 suggested that there is

no need to have a specific calibration phase for a long-

term BCI user performing stroke rehabilitation if we have

large enough data recorded previously from the same user.

In our experiment, each session had 160 trials from each

class. So this question arises whether a reliable model still

can be trained, if we have less number of trials in each

session. In the other words, how many trials over 11 sessions

are required to train a stable and reliable model for stroke

rehabilitation?

To answer this question, for each subject we randomly and

equally selected different number of trials from each of 11

sessions to train a model, and subsequently we tested the

model on the second half of the new session. The averaged

results over all the sessions and all the 11 patients were

displayed in Fig. 5.

Fig. 5 shows that at the beginning, increasing the number

of trials dramatically increased the accuracy. However, after

applying around 400 trials of each class the slop of increasing

the accuracy was considerably reduced. This means that the

trained model is getting stable against increasing the number

of the train trials. The thick solid line in Fig. 5 presents the

averaged accuracy obtained by the models trained from the

data recorded in the same session as the test data. Thus, this

figure suggested that on average the models trained using

around 660 trials (60 trials from each session) per each class

can not only outperform the models trained using the data

recorded in the same session as the test data, but also perform

only less than two percents less accurate than a model trained

using all the 160 ∗ 11 = 1760 trials per class.

Fig. 5. The averaged accuracy of models trained using different numbers
of trials selected from the 11 sessions recorded in the different days rather
than the test day. As the baseline, the red line presents the averaged accuracy
obtained by the models trained from the data recorded directly before the
test data.

V. CONCLUSIONS

Using a large EEG dataset recorded from 11 stroke pa-

tients performing 12 stroke rehabilitation sessions over a

month, this paper showed that the calibration session can be

reliably omitted for long-term BCI users. The experimental

results showed that concatenating 11 sessions which each

session comprises only 60 trials per class yielded a reliable

train model, where to classify a new test session, this

model outperformed the standard calibration model recorded

directly before the test session by an average of 0.22%.

Increasing the number of trials gradually increased the ac-

curacy such that using 11 sessions with 160 trials per class

outperformed the standard calibration model by an average

of 2.1%. Interestingly, for 4 of 11 subjects, the proposed

model significantly outperformed the standard calibration

model (p < 0.05).

In this study we assumed that for each subject a pool

of sessions recorded previously in the same conditions as

the new session is available. Since BCI will become more

popular in stroke rehabilitation, such pools of sessions will

be naturally obtained, and our study would help to make use

of this data to facilitate the further sessions. In the future, we

aim to further optimize our results by finding the minimum

number of sessions required to reliably omit the intra-session

calibration.
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