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Abstract—Brain-computer interface (BCI) technology has
shown the capability of improving the quality of life for people
with severe motor disabilities. To improve the portability and
practicability of BCI systems, it is crucial to reduce the number
of EEG channels as well as to have a good reliability. However,
a relatively neglected issue in the EEG channel selection studies
is the robustness of selected channels across sessions. This paper
investigates whether the selected channels from first session
is also useful for subsequent sessions on other days for a
stroke patient. For this purpose, a new robust sparse common
spatial pattern (RSCSP) algorithm is proposed for optimal EEG
channel selection. Thereafter, the robustness of the proposed
algorithm as well as 5 existing channel selection algorithms
is investigated across 12 sessions data from 11 stroke patients
who performed motor imagery based-BCI rehabilitation. The
experimental results show that the proposed RSCSP channel
selection algorithm significantly outperforms the other channel
selection algorithms, when the 8 channels selected from the first
session are evaluated on the 11 subsequent sessions. Moreover,
there is no significant difference between the classification results
of 8 channels selected by the proposed RSCSP algorithm from the
first session and the classification results of 8 optimal channels
selected from the same session as the test session.

I. INTRODUCTION

Brain-computer interface (BCI) provides a direct communi-
cation pathway between a human brain and an external device
[1]. Thus, BCI technology enables people with sever motor
disabilities to use their brain signals for communication and
control [2]. Furthermore, BCI as a rehabilitation tool has been
effectively used in restoring motor functions in patients with
moderate to sever stroke impairments [3].

In majority of current BCI systems, the brain signals are
measured by EEG, due to its low cost and high time resolution
compared to other modalities, such as fMRI, fNIRS, etc [4].
To achieve good performance, most EEG based BCIs require
signals from multiple sites of the scalp [5]. However, applying
a large number of EEG channels may include noisy and
redundant signals that degrade the BCI performance [6], [7].
Moreover, using a large number of channels involves a pro-
longed preparation time that directly impacts the convenience
in the use of the BCI. The convenience of users is more crucial
when a BCI application is going to be used as a clinical
device by a patient in multiple sessions. Therefore, selecting
the least number of channels that yield the best or required
accuracy over subsequent sessions can balance both needs for
performance and convenience.

Various channel selection methods have been proposed in
the literature. In [7]-[9], channel selection is embedded in
a classifier such as support vector machine (SVM), which
recursively eliminates the least-contributed channels in the
classification accuracy. In [10] and [11], the channels are
ranked based on the mutual information (MI) between the
channels and the class labels. The common spatial pattern
(CSP) algorithm is also used for channel selection [12],
whereby the channels are directly selected according to their
CSP coefficients. Recently, a sparse common spatial pattern
(SCSP) algorithm was proposed to select the least number of
channels within a constraint of classification accuracy [13].
It was shown that the SCSP channel selection significantly
reduced the number of channels, and outperformed several
existing channel selection algorithms.

Despite extensive works, few channel selection studies
focused on stroke patients who are potential users for BCI
[14], [15]. Furthermore, the robustness and stability of the
channel selection algorithms across different sessions have
been relatively neglected. Although many channel selection
algorithms are effective in selecting a subset of channels for
the class prediction in a same session, they may not be neces-
sarily reliable to identify channels for subsequent sessions on
other days. EEG patterns vary from session to session due to
several subject’s preconditions [16]. For instance, the physical
properties of the electrodes such as position and conductivity
can change over sessions. Besides, mental conditions such as
attention, awakeness and task involvement can display a large
variability between sessions. Therefore, the question arises
whether a set of channels selected from one session is also
effective for other subsequent sessions.

To address this research question, in this study 12 sessions
of motor imagery-based BCI data collected from 11 stroke
patients [3] are used. First, a new robust sparse common spatial
pattern (RSCSP) algorithm is proposed for optimal EEG
channel selection, whereby the estimates of the covariance
matrices are replaced with the robust minimum covariance
determinant (MCD) estimates [17]. Thereafter, the robustness
of the proposed algorithm, as well as several existing channel
selection algorithms, is investigated across the 12 sessions of
EEG data. For this purpose, the proposed RSCSP channel
selection algorithm is compared with SCSP [13], CSP [12],
fisher criterion (FC) [7], MI [10], and SVM [7] based channel
selection algorithms in terms of the classification accuracies

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence 
June, 10-15, 2012 - Brisbane, Australia IJCNN

2319



of the subsequent sessions using the optimal eight channels
selected from the first session. The results are also compared
with the results obtained from the optimal eight channels
selected from the same session as the test session.

The remainder of this paper is organized as follows: Section
II briefly describes 5 popular EEG channel selection algo-
rithms as well as the proposed RSCSP channel selection algo-
rithm. The applied dataset and the performed experiments are
explained in Section III. Section IV presents the experimental
results and finally Section V concludes the paper.

II. METHOD

In this section, 5 successful EEG channel selection algo-
rithms based on SCSP [13], CSP [12], FC [7], MI [10], and
SVM [7] are briefly introduced. Furthermore, a new EEG
channel selection algorithm based on a robust sparse common
spatial pattern (RSCSP) algorithm is proposed.

A. SCSP based channel selection

The CSP algorithm [18] is an effective technique in discrim-
inating two classes of EEG data. The CSP algorithm linearly
transforms the EEG data to a spatially filtered space, such
that the variance of one class is maximized while the variance
of the other class is minimized. The CSP transformation
matrix, W, is generally computed by solving the eigenvalue
decomposition problem:

C1W = (C1 +C2)WD, (1)

where C1 and C2 are respectively estimates of the covariance
matrices of the band-passed EEG measurements of each class;
D is the diagonal matrix that contains the eigenvalues of C1.
The rows of the CSP matrix, W, are the spatial filters and the
columns of W−1 are the spatial patterns.

Since band-pass EEG measurements have approximately
zero mean values, the covariance matrices are estimated by

Ĉω =
1

(t× nω)− 1
EωE

T
ω , (2)

where ω = 1, 2; Eω ∈ Rc×(t∗nω) denotes the concatenated
EEG measurements of all the trials in the training data for the
motor imagery action of class ω; c and t denote the number
of EEG channels and EEG samples per channel respectively,
and nω denotes the number of trials in the training data that
belong to class ω.

The rows of the CSP projection matrix give nonuniform
weights to channels, so that the differences between two
classes of the EEG signals are maximized. Hence, the CSP
spatial filters can be seen as source distribution vectors.

The use of the CSP algorithm for EEG channel selection
was proposed by Wang et al. [12]. In the proposed method,
four channels corresponding to the maximal CSP vector co-
efficients were selected as the optimal channels. However,
the weights of the CSP are dense (not sparse). Thus, by
eliminating other channels, the remaining signals can no longer
be projected onto the direction that best discriminates the two
classes of EEG signals. Moreover, since EEG measurements

are generally contaminated by artifacts and noise, the CSP
algorithm that is based on the covariance matrices of EEG
trials, can be distorted by these contaminants [19].

These issues motivated the approach to sparsify the CSP
spatial filters to emphasize on a limited number of channels
with high variances between the classes, and to discard the rest
of the channels with low or irregular variances that may be due
to noise or artifacts. To sparsify the CSP spatial filters, first
we formulate the CSP algorithm as an optimization problem,
thereafter the sparsity is induced in the CSP algorithm by
adding an l1/l2 norm regularization term to the optimization
problem as presented in [13]. The proposed SCSP algorithm
is then formulated as:

min
wi

(1−r)(
i=m∑
i=1

wiC2wT
i +

i=2m∑
i=m+1

wiC1wT
i )+r

i=2m∑
i=1

∥wi∥1
∥wi∥2

Subject to: wi(C1 + C2)wT
i =1 i={1, 2, ..., 2m}

wi(C1 + C2)wT
j = 0 i, j = {1, 2, ..., 2m} i ̸= j,

(3)

where r (0 ≤ r ≤ 1), is a regularization parameter that
controls the sparsity (number of removed channels) and the
classification accuracy. When r = 0, the solution is essentially
the same as the CSP algorithm. In this study, for r ̸=0, spatial
filters obtained from the CSP algorithm are used as the initial
point.

To select channels using the proposed method, first two
sparse spatial filters corresponding to two motor imagery tasks
are obtained by solving the optimization problem given in (3)
with m=1. Since the value r controls the number of selected
channels and the achieved classification accuracy, it should be
carefully chosen to fulfil the application needs. After obtaining
the sparse filters, channels corresponding to the zero elements
in both of the spatial filters are discarded, and the rest are
defined as the selected channels.

B. New RSCSP based channel selection

Many multivariate datasets contain data points that deviate
from the pattern suggested by the majority of the data [19],
[20]. These data points are called outliers. The classical
multivariate method to estimate the covariance matrix of EEG
measurements can be strongly affected by even a few outliers
[20]. On the other hand, robust statistics provides alternatives
to the classical statistical estimates that are less affected by
outliers [17]. A useful measure of robustness of an estimator
is the breakdown value, which states the smallest amount of
outlier contamination that can have an arbitrarily large effect
on the estimator [20].

1) Minimum Covariance Determinant estimate: The non-
robust CSP algorithm has an inherent breakdown value of 0.
The SCSP algorithm, which uses the classical multivariate
estimate in (2), also has an inherent breakdown value of 0.
Therefore, the robust sparse common spatial pattern (RSCSP)
is proposed to replace (2) with the MCD estimator [17]:

Ĉω =
1

(α× t× nω)− 1
ÊωÊ

T
ω , (4)
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where
Êω = argmin

ε̂⊂ε
|Ĉω|; (5)

(1−α) is the fraction of outliers to resist, α = [0.5, 1]; ε is the
set of t×nω c-dimensional elements of Eω ∈ Rc×(t∗nω); ε̂ is
the subset of ε containing α ∗ t ∗ nω c-dimensional elements
of Eω ∈ Rc×(α∗t∗nω); and |.| denotes determinant.

The MCD estimator, given in (5), thus computes a defined
fraction α of the data such that the determinant of the estimate
of the covariance matrix is minimized. Therefore, the MCD
covariance estimation is the mean of the covariance of those
α points. The MCD is a robust method in the sense that
the estimates are not unduly influenced by outliers in the
data, even if there are many outliers. The issues of the MCD
estimator are that it depends on the initial estimates and it
is iterative [21]. The FASTMCD algorithm resolves these
issues by drawing multiple random subsets of the data and
iteratively approximates towards a lower determinant [21]. The
implementation of FASTMCD is available as the MATLAB
function ”mcdcov” in the LIBRA Toolbox from [22].

C. CSP based channel selection
In the CSP based channel selection [12], [23] optimal

channels for each motor imagery task are determined through
the maximums of the absolute value of the corresponding
spatial pattern. Let ch(|SP1,i|) and ch(|SP2,i|) respectively
denote the ith best channel of the first and second motor
imagery tasks, with corresponding absolute spatial pattern
coefficients |SP1,i| and |SP2,i|. Therefore (6) is calculated to
obtain overall ranking:

CH2i−1 = ch(max(|SP1,i|, |SP2,i|))
CH2i = ch(min(|SP1,i|, |SP2,i|)), (6)

where i varies from 1 to the total number of channels. Finally
since each channel has been iterated twice in CH, the lower
rank is discarded. As shown in (6), in this method channels
are pair-wisely selected from both performed motor imagery
areas.

D. MI based channel selection
In this algorithm, the channels that their corresponding

features have maximum MI with the class labels are ranked
as the best channels [10]. In this study, the power of each
channel was used as the corresponding feature. The MI of
feature vector X with the class ω={1, 2} is computed using:

I(X;ω) = H(ω)−H(ω|X) , (7)

where H(ω) is the entropy of the class label defined as:

H(ω) = −
2∑

ω=1

P (ω) log2 P (Ω) ; (8)

and the conditional entropy is

H(ω|X)=−
2∑

ω=1

nt∑
k=1

P (ω|Xk) log2 P (ω|Xk) , (9)

where Xk is the feature value of the kth trial from X, and P is
the probability function. The conditional probability P (ω|Xk)
can be computed using Bayes rule given in (10) and (11).

P (ω|Xk) = (P (Xk|ω)P (ω))/P (Xk) , (10)

P (Xk) =
2∑

ω=1

P (Xk|ω)P (ω) . (11)

The conditional probability P (Xk|ω) can be estimated
using the Parzen Window algorithm [24].

E. FC based channel selection

The FC determines how strongly a feature is correlated with
the labels [7], whereby the score Rj of feature j is defined as

Rj(X) =
(µ(X1

j )− µ(X2
j ))

2

V (X1
j ) + V (X2

j )
, (12)

where X1
j and X2

j denote the feature vector of feature j in
two different classes; µ and V respectively denote mean and
variance. The rank of a feature is simply set to the mean score
of the corresponding features. In this study, the power of each
channel was used as the feature.

F. SVM based channel selection

The SVM is a classification technique [7] which performs
efficiently in a number of real-world problems. In SVM
based channel selection, channels are selected according to a
recursive feature elimination (RFE) method. RFE method was
proposed by Guyon et al. [25] and is based on the concept
of margin maximization. RFE algorithm is started with all the
features and eliminates them backward. In each iteration the
SVM classifier is trained on the current subset of features. For
each remaining feature Xi, without retraining the classifier, the
change in the classification accuracy from the removal of Xi

is estimated. Thereafter the feature that results in improving or
least degrading in the classification accuracy is removed. This
algorithm is iterated till only a specified number of features
remains.

III. EXPERIMENTS

A. Data description

In this study, the EEG data from 11 hemiparetic stroke pa-
tients who underwent motor imagery-based BCI with robotic
feedback neuro-rehabilitation were used (refer NCT00955838
in ClinincalTrials.gov) [3]. 27 channels of EEG measurements
shown in Fig. 1 were acquired using Nuamps acquisition
hardware (http://www.neuroscan.com) with unipolar Ag/AgCl
electrodes channels, digitally sampled at 250 Hz with a
resolution of 22 bits for voltage ranges of 130 mV. EEG
measurements from all the channels were band-pass filtered
from 0.05 to 40 Hz by the acquisition hardware.

In the rehabilitation phase, the patient’s impaired limb was
strapped to the MIT-Manus robot. In each trial the patient was
first prepared with a visual cue for 2 s, then a go cue would
instruct the patient to perform motor imagery of the impaired
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Fig. 1. Position of EEG electrodes used for data acquisition.

hand. If the voluntary motor intent was detected within the 4 s
action period, the MIT-Manus robot would assist the patient in
moving the impaired limb towards the goal. Finally the patient
was asked to rest for 6 s. Each patient underwent 12 neuro-
rehabilitation sessions, 3 sessions per week. There was a total
of 160 repeats in each session (1 repeat means a complete run
from preparation cue to the rest stage). There was a dedicated
calibration phase before the rehabilitation phase to train the
online classifier.

B. Evaluation of performance across sessions

In our study, the classification problem involved distin-
guishing between the motor imagery stage and the rest stage.
Therefore, each session comprised 160 motor imagery actions
of the affected hand and 160 rest conditions. There were a total
of 12 sessions of BCI data recorded on different days for each
patient. The EEG data were band-pass filtered using elliptic
filters from 8 to 35Hz, since this frequency band included the
range of frequencies that are mainly involved in performing
motor imagery.

An overview of the performed experiments to evaluate
different channel selection algorithms over the sessions are
shown in Fig. 2 and Fig. 3.

In the first experiment, we aimed to evaluate the perfor-
mance of the selected channels from the first session on the
11 subsequent sessions recorded on other days. Therefore, as
shown in Fig. 2, all the trials of the first session were hired to
select subsets of 8 optimal channels using the different channel
selection algorithms. The performance of the selected channels
was evaluated on the subsequent sessions, such that the first
part of each session was used for training a model and the
second half was used for testing. Thus, the CSP spatial filters
were trained over the selected channels. Then, the EEG signals
were spatially filtered using the two first and the two last CSP
filters. Finally, the variance of the spatially filtered signals were
applied as the inputs of the SVM classifier.

To investigate how well the selected channels from the first
session performed on the 11 subsequent sessions, the obtained
classification accuracies were compared with the results of
the selected channels from each session. Thus, in the second
experiment, as shown in Fig. 3, the 8 optimal channels of each
session were selected from the first half of the corresponding

session, and the performance of the selected channels was
evaluated on the second part of it. Thus, the results from
the new selected channels were not affected by inter-session
nonstationarities and would be proper baselines to compare
with the previous results coming from the first experiment.

Fig. 2. First experiment: Diagram presenting method for evaluating multi-
session channel selection performance.

Fig. 3. Second Experiment: Diagram presenting method for evaluating single
session channel selection performance.

C. Comparison between different algorithms

In this work, the performance of six different channel se-
lection algorithms were evaluated across the sessions, namely
RSCSP, SCSP [13], FC [7], MI [10], SVM [7], CSP [12].
Beside the channels selected from these algorithms, 2 fixed
electrode layouts were also considered. Since for the fixed
mental tasks of motor imagery, the EEG literature suggested
the channels C3 and C4 and adjacent electrodes [4], [9] , our
guesses at a generally good subgroup from the 27 recorded
EEG channels (see Fig. 1) were as follows:

• The set of ”FC3, C3, CP3, FCz, CPz, FC4, C4, CP4” that
is referred as ”Manual1” in this study.

• The set of ”FC3, C3, CP3, T7, T8, FC4, C4, CP4” that
is referred as ”Manual2” in this study.

It is noted that this study focused on the subject-dependent
channel selection. The power of each channel was used as
the feature in FC, MI and SVM based channel selection algo-
rithms. In the SCSP and RSCSP channel selection algorithms,
the optimal r value was selected by testing a set of small
r values in (3), such that only 8 channels were selected.
Moreover, the MCD estimator in the RSCSP algorithm was
configured with α = 0.75.

IV. RESULTS AND DISCUSSION

This section analyzes how transferable the selected channels
are from one session to new sessions on other days.

The results of the first experiment (see Fig. 2) are presented
in Table I, such that the averaged classification accuracies
(averaged test results from session 2 to 12) of 8 channels

2322



TABLE I
AVERAGED CLASSIFICATION ACCURACIES OF 11 SESSIONS USING 8 CHANNELS SELECTED FROM THE FIRST SESSIONS. THE CHANNEL SELECTION
WAS PERFORMED USING THE PROPOSED RSCSP, SCSP, CSP, MI, FC, SVM, MANUAL1 AND MANUAL2 ALGORITHMS. ”FULL CH.” DENOTES THE

RESULTS USING ALL THE CHANNELS.

Patient’s code P003 P005 P007 P010 P012 P029 P034 P037 P044 P047 P050 Mean

Full Ch. 59.09 73.71 90.53 66.39 59.94 61.39 56.95 72.96 75.17 73.98 78.29 69.85

RSCSP 59.71 72.5 87.68 69.04 59.52 62.07 61.59 74.61 73.29 70.74 76.65 69.76
SCSP 58.98 71.97 89.88 69.78 58.94 59.74 59.71 72.45 70.05 70.74 75.51 68.88
CSP 57.84 72.12 84.33 63.81 56.22 58.55 60.39 72.11 71.47 67.72 71.42 66.91
MI 60.625 72.16 84.47 63.29 55.92 57.24 60.67 69.22 70.62 72.16 71.42 67.07
FC 57.61 69.47 85.87 63.61 54.64 58.32 58.35 68.31 63.46 64.49 69.88 64.91

SVM 59.89 72.13 83.11 60.68 55.66 58.95 59.94 66.38 64.22 62.60 73.41 65.18
Manual1 57.33 67.41 85.45 61.55 55.53 59.40 57.53 68.76 65.00 60.56 71.76 64.57
Manual2 58.07 65.80 81.13 64.85 55.08 62.13 59.65 69.28 72.33 66.25 75.22 66.34

selected from the first session using the proposed RCSP, SCSP,
CSP, MI, FC, SVM, Manual1 and Manual2 algorithms are
compared. The results showed that in 7 patients transferring
the 8 channels selected by the proposed RSCSP to the 11
subsequent sessions yielded the highest averaged accuracy
compared to the other channel selection algorithms. In 2 other
patients the SCSP channel selection algorithm outperformed
the other algorithms. Finally in 2 remaining patients the MI-
based algorithm achieved the highest accuracy across the
sessions. However, averaged results over the 11 stroke patients
showed that the proposed RSCSP channel selection algorithm
outperformed the SCSP, CSP, MI, FC, SVM, Manual1 and
Manual2 channel selection algorithms by an average accuracy
of 0.88%, 2.85%, 2.69%, 4.85%, 4.58%, 5.19%,and 3.42%
respectively.

Interestingly, the statistical t-test on the entire results across
the 11 sessions and the 11 patients showed that the proposed
RSCSP algorithm significantly outperformed all the other
algorithms (p = 0.04, 1.7 × 10−8, 2.8 × 10−6, 10−13, 5 ×
10−12, 3×10−16 and 1.5×10−9 for the comparison with SCSP,
CSP, MI, FC, SVM, Manual1 and Manual2 respectively).

The statistical results also showed that SCSP significantly
outperformed CSP, MI, FC, SVM, Manual1 and Manual2 in
terms of the classification accuracy across the sessions. This is
in the same line with the findings of our previous study [13],
although data from healthy subjects were used on that study.

Table I also shows that the 8 channels selected by the
proposed RSCSP algorithm from the first session yielded
almost the same averaged classification accuracy as all the 27
recorded channels. The statistical t-test on the entire results
proved that there is no significant difference between these
two groups (p = 0.845). This suggests that the 8 channels
selected by the RSCSP algorithm from the first session could
not only enhance the patient’s convenience in the subsequent
sessions from the use of lesser channels, but also yield almost
the same accuracy as using all the 27 channels.

Table II presents the results of the second experiment (see
Fig. 3). In this experiment, the optimal 8 channels were
selected from the train data of each session and were tested
on the test data of the same session. Thus, the classification
results were not affected by inter-session nonstationarities and

would be proper baselines to compare with the previous results
coming from the first experiment. Since it was shown that
the SCSP channel selection algorithm outperformed the CSP,
MI, FC and SVM algorithms [13], in this experiment the
optimal channels were only selected using the SCSP and RSCP
algorithms.

The results in Table II shows that when the selected channels
were tested on the same session, the RSCSP and SCSP channel
selection algorithms averagely yielded the same classification
accuracies. The statistical t-test on the entire results also
showed that in this experiment there is no significant difference
between the RSCSP and SCSP results (p = 0.9).

Comparison between Table I and Table II reveals that the
results of 8 channels selected from the same session are
superior to the results of channels selected by RSCSP from
the first session by an average of less than 1%. Interestingly,
the statistical t-test on the entire results showed that there is
no significant difference between the results of 8 channels
selected by RSCSP from the first session and the results of 8
channels selected by RSCSP and SCSP from the same session
(p = 0.185 and 0.10 respectively).

V. CONCLUSION

Using a 12 sessions motor imagery-based BCI dataset
recorded from 11 stroke patients, this paper investigated how
transferable the selected channels are from first session to
subsequent sessions on other days. For this purpose, first a
new RSCSP algorithm was proposed for optimal EEG channel
selection, whereby the estimates of the covariance matrices
were replaced with the robust MCD estimates. Thereafter, the
proposed RSCSP channel selection algorithm was compared
with 5 popular channel selection algorithms in terms of
the classification accuracies across the subsequent sessions.
Beside the channels selected from those algorithms, two fixed
electrode layouts containing channels near motor imagery
areas were also considered. These two electrode layouts were
abbreviated as Manual1 and Manual2.

Experimental results showed that the proposed RSCSP
channel selection algorithm significantly outperformed the
SCSP, CSP, MI, FC, SVM, Manual1 and Manual2 channel
selection algorithms, in terms of classification accuracy over
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TABLE II
AVERAGED CLASSIFICATION ACCURACIES OF 11 SESSIONS USING 8 CHANNELS SELECTED FROM THE FIRST HALF OF EACH SESSION. THE CHANNEL

SELECTION WAS PERFORMED USING THE PROPOSED RSCSP AND SCSP ALGORITHMS. ”FULL CH.” DENOTES THE RESULTS USING ALL THE
CHANNELS.

Patient’s code P003 P005 P007 P010 P012 P029 P034 P037 P044 P047 P050 Mean

Full Ch. 59.09 73.71 90.53 66.39 59.94 61.39 56.95 72.96 75.17 73.98 78.29 69.85

RSCSP 59.09 74.875 89.52 67.32 59.86 65.76 62.20 73.13 74.32 73.41 73.41 70.47
SCSP 59.26 73.36 88.45 69.02 57.76 65.93 62.09 74.17 74.00 73.81 77.27 70.46

the 11 subsequent sessions, by an average of 0.88%, 2.85%,
2.69%, 4.85%, 4.58%, 5.19%, and 3.42% respectively. More-
over, the results showed that the 8 channels selected by the
proposed RSCSP algorithm from the first session yielded
almost the same averaged classification accuracy as all the
27 recorded channels over the 11 sessions.

Finally, the classification results of the optimal eight chan-
nels selected from the same session as the tested session were
obtained using the RSCSP and SCSP algorithms. Compared to
the 8 channels selected by RSCSP from the first session, the
selected channels from the same session yielded an average
less than 1% improvement in the classification accuracy,
while there was no significant difference between these two
groups of results. In summary, the results suggested that 8
channels selected by the proposed RSCSP algorithm from one
session could be efficiently used on 11 subsequent sessions on
different days for stroke patients.
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