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Abstract

To enhance ICP monitoring of Traumatic Brain In-

jury (TBI) patients, much research effort has been at-

tracted to the development auto-alarming systems and

forecasting methods to predict impending intracranial

hypertension episodes. Nevertheless, the performance

of the proposed methods are often limited by the pres-

ence of artifacts in the ICP signal.To address this bot-

tleneck, we propose novel artifact correction methods.

A scale-based filter is proposed to identify the artifacts.

For the proposed filter, instead of classic statistics, ro-

bust statistics is employed to estimate the scale param-

eter. Thus, our proposed methods are robust against

undesirable influences from artifacts. Since the ICP sig-
nal is non-stationary, non-stationary signal processing

techniques, the empirical mode decomposition (EMD),

wavelet transformation and median filter, are also em-

ployed. The effectiveness of proposed methods are

evaluated experimentally. Experimental results demon-

strate that, with the proposed artifact correction meth-

ods, significant performance gains can be achieved.

1. Introduction

Intracranial pressure (ICP) is defined as the internal
pressure in the skull. During the patient’s stay in neuro-
critical care, ICP is the most crucial physiological sig-
nal for Traumatic Brain Injury (TBI) patient monitoring
[1]. When ICP rises above the safe region, it is med-
ically referred as an episode of intracranial hyperten-
sion. Intracranial hypertension may lead to direction
brain damages and indirect damages due to insufficient
oxygen and nutrition supply to the brain.

To enhance ICP monitoring of TBI patients, in
the last 30 years, much effort [1] has been spent in
the development auto-alarming systems and forecasting
methods to predict impending intracranial hypertension
episodes. Nevertheless, the performance of the pro-
posed methods are often limited by the presence of ar-
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Figure 1: An segment of ICP signal with artifacts.

tifacts in the ICP signal. As illustrated in Figure 1, due
to the complicated environment of neuro-critical care,
ICP monitoring signal is often contaminated with arti-
facts. Since the artifacts are much stronger compared
to the signal, they can impair the performance of auto-
alarming systems by causing false alarms and can also
jeopardize forecasting models by introducing undesir-
able biases. However, in the literature, not much work
has studied the artifacts in ICP signals. To address this
gap, we propose an artifact correction method based
on robust filtering and non-stationary signal processing
techniques.

2. Signal Characteristics &
Problem Definition

The task of artifact correction consists of two sub-
tasks: artifacts detection and artifacts imputation. The
detection task is to identify artifacts from the contami-
nated signal; the imputation task then replaces the de-
tected artifacts with imputed values so to reconstruct the
original characteristics of the signal. This paper focuses
more on the detection task, because accurate artifact de-
tection is the prerequisite for effective artifact correc-
tion.

Artifacts in ICP signals are often caused by environ-
mental factors in the neuro-critical cares, e.g. adjust-
ment of bed angles, movement of patients, shift of sen-
sors, etc. As can be observed from Figure 1, the artifacts
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are segments of signals, which oscillate over extremely
large scales (variants) that are physiologically impossi-
ble. Suppose the ICP signal consists of an innovation
process, ut, an i.i.d white noise, where ut ∼ N(0,σ2

0).
An artifact can then be interpret as a segment of i.i.d
noise, vt, where vt ∼ N(0,σ2

1) and σ2
1 >> σ2

0 .
Since an artifact can be modeled as noise with an

abnormally large scale parameter σ2
1 , we propose to de-

tect artifacts with a scale-based filter. Instead of classic
statistics, robust statistics [2] is employed to ensure the
estimation of the scale parameter will not be unduly bi-
ased due to the existence of artifacts.

We also observe that the ICP signal is non-stationary,
and preprocessing is necessary before filtering can be
applied to identify artifacts. In the literature, three
popular non-stationary signal processing techniques are
empirical mode decomposition (EMD) [3], wavelet
transformation [4] and median filter. Based on these
three processing techniques., three artifact detection ap-
proaches are proposed. To decide on the most effective
approach, the strengths and weakness of the proposed
approaches are evaluated and compared both theoreti-
cally and experimentally .

3. Proposed Method

3.1 Artifact Detection

3.1.1 Robust MAD Filter

We observe that artifacts in the ICP signal can be ap-
proximately modeled as a segment of i.i.d white noise
with an abnormally large scale parameter. Inspired by
this observation, a scale-based filter is proposed to iden-
tify the artifacts. The idea is simple: data points that are
abnormally far away (w.r.t. the scale parameter) from
the “main crowd” are likely to be artifacts. To develop
the filter, an accuracy estimation of the scale parameter
is necessary. However, this task can be challenging in
the presence of artifacts.

Figure 2: Comparison between estimations based on classic

statistics and robust statistics.

In conventional statistics, the scale parameter is usu-
ally estimated with the sample variants. However, as
graphically demonstrated in Figure 2, the sample vari-
ant estimation is not robust against artifacts. It in-
troduces unbounded bias in the presence of extremely
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Figure 3: Comparison between ICP signal and its 1st IMF

component.

large artifacts. Filters developed based on the sam-
ple variant estimation suffer from the “marking effect”,
where large artifacts will “mask out” small artifacts and
make them undetectable.

To address this challenge, we estimate the scale pa-
rameter with the Median Absolute Deviation (MAD), a
robust estimator. MAD is formally defined as

MADn = n × medi|xi − medjxj | (1)

where n is a constant, and n = 1.4826 assuming the
artifacts follow Gaussian distribution. Among all scale

estimators, MAD has the highest tolerance against ar-
tifacts, and its influence function is bounded with the
sharpest possible bounds [5]. The biggest advantage of
MAD is that it is simple and easy to compute. To iden-
tify artifacts, we compute a score for each data point
xi.

score =
|xi − medjxj |

MADn
(2)

Data points whose scores exceed a cutoff point are then
classified as artifacts. In the proposed method, the cut-
off point is set to be 3. The proposed MAD filter can be
seen as the robust version of the well-known 3σ filter.

3.1.2 Empirical Mode Decomposition Approach

Empirical Mode Decomposition (EMD) [3] is an empir-
ical process that decomposes a signal into multiple com-
ponents called the Intrinsic Mode Functions (IMFs).
Each IMF component represents a unique mode of os-
cillation imbedded in the data, which contains no com-
plex riding waves. As illustrated in Figure 3, we ob-
serve that, after decomposition, the large amplitude os-
cillations in the 1st IMF component align perfectly with
the artifacts in the original ICP signal. This finds us an
effective indicator to locate the artifacts.

Inspired by these observations, based on EMD we
propose to extract artifacts from the ICP signals in two
steps. (Details of this approach is discussed in our pre-
vious work [?].)

Step 1 With the proposed robust MAD filter, locate the
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Figure 4: Comparison among ICP signal, aggregated energy

from wavelet transformation and its 1st derivative.

positions of artifacts based on the 1st IMF compo-
nent.

Step 2 Iteratively “grow” the full segments of artifacts
based on subsequent IMF components.

The strength of the EMD approach is that, unlike other
transformations, e.g. wavelet transformation, EMD is
adaptive with the basis of the decomposition automati-
cally derived from the signal. However, since EMD is
a empirical process, it can be computationally “expen-
sive”. In addition, since the number of IMF components
is signal dependent and is not controllable, the compu-
tational time can grow unbounded.

3.1.3 Wavelet Transformation Approach

Wavelet transformation is basically an adjustable win-
dow Fourier spectral analysis with the general definition
as:

W (a, b; X,ψ) = |a|−1/2

∫

−∞

∞

X(t)ψ∗(
t − b

a
)dt (3)

where ψ∗(.) is the basis wavelet function, a refers to the
dilation factor and b refers to the translation of the ori-
gin. Equivalently, the ratio 1/a denotes the frequency
scale and b indicates the temporal location of an event.
The physical meaning of wavelet transform can be sim-
ply interpreted as: W (a, b; X,ψ) measures the “en-
ergy” of signal X at frequency scale 1/a and t = b.

In our proposed approach, the Haar wavelet basis
function is employed to detect sudden transition in the
underlining signal. Based on wavelet transform, the de-
tection approach is composed with three steps:

Step 1 Transform the ICP signal into “energy” based
on Haar wavelet.

Step 2 Aggregate the transformed “energy” across dif-
ferent scales. As shown in Figure 4, artifact seg-
ments in the ICP signal will cause obvious im-
pulses in the aggregated energy, which can be used
as indicators for artifact detection.

ICP Signal
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Figure 5: Comparison among ICP signal and the residuals of

median filter.

Step 3 Calculate 1st derivative of the aggregated en-
ergy, and apply the proposed MAD filter to iden-
tify artifact segments.

With the Haar basis function, the wavelet transform
approach is very sensitive to sudden changes in the sig-
nal, which is ideal for artifact detection. Moreover,
superior to windowed Fourier transform, the wavelet
transform maintains a uniform resolutions across all
scales. It is also computationally “cheaper” than the
EMD approach. However, as its weakness, the perfor-
mance of the wavelet transform approach greatly relies
on the right choices of the basis function.

3.1.4 Median Filter Approach

Median filter is a simple but effective tool that can
be used to extract the trend component from a non-
stationary signal. Since it is based on the median oper-
ation, the median filter is also a robust process that are
sturdy against undesirable influence of artifacts. Give
a time series X(n), the outcome of a k-order median
filter, T (n), is defined as:

T (n) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

if k is odd :

median{X(n− k−1

2
), · · · , X(n + k−1

2
)}

if n is even :

median{X(n− k
2
), · · · , X(n + k

2
)}

(4)
Let X(n) denote the original ICP signal. The median
filter based artifact detection approach is proposed as
follows.

Step 1 Apply median filter on X(n) and obtain the
trend component T (n).

Step 2 Calculate the residual component R(n) =
X(n)−T (n). Figure 5 demonstrates that the resid-
ual component of median filter is also an effective
indicator for artifacts in ICP signals.

Step 3 Apply the proposed MAD filter on R(n) to
identify artifact segments.
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The most attractive strength of the median filter ap-
proach is its simplicity, which makes it a very attractive
solution for online applications. Moreover, the median
filter is a robust process that maintains stable perfor-
mance in the presence of artifacts. On the other hand,
the weakness of the median filter approach is that, to
maximize its effectiveness, appropriate order k is nec-
essary. In our case, the order k is set to 50 based on our
statistical survey on the characteristics of artifacts in the
ICP signals.

3.2 Artifact Imputation

After artifact segments are identified, detected ar-
tifacts are imputed based on the Autoregression In-
tegrated Moving Average (ARIMA) model. Artifact
segments are usually very short segments of signals.
Within short segments, we observe that the ICP signal
follows some ARMA-like behaviors. Thus, we choose
the ARIMA model, which not only captures the char-
acteristics of ARMA but, with its differentiating step,
is also capable to normalize non-stationarity in signals.
The order of ARIMA is optimized based on the Akaike

information criterion.

4. Experimental Evalution

The proposed artifact correction methods are tested
on the recorded ICP signals of 82 TBI patients, who
were admitted in between 2007 to 2010. The selected
patients were monitored for at least 12 hours. The effec-
tiveness of the proposed artifact correction approaches
are evaluated based on their achieved performance gain
in ICP signal forecasting. The ARIMA model with
AIC order selection is employed to forecast the ICP sig-
nal. The standard forecasting approach that has no arti-
fact correction features is used as a comparison bench-
mark. The forecasting horizon is set as 15 mins, which
is recommend by neurosurgeons to enable meaningful
diagnostic applications. The forecasting performance
is measured in terms of the Mean Square Error (MSE),
Relative Absolute Error (RAE) and Forecasting Error
(FER) [6]. The average computational time for each
approach is also compared.

Table 1 summarizes the performance comparison re-
sults. It is observed that all three proposed approaches
achieve significant performance gains. Among all, the
EMD approach achieves the best gains. However, as
expected, it requires a longer computational time. This
makes it a more suitable method for offline analytic ap-
plications rather than online applications. For online
diagnostic or prognostic applications, we recommend
the median filter approach, for it is computationally ef-
ficient and, at the same time, achieves satisfactory per-
formance gains.

GMSE GRAE GF ER Time(sec)

EMD 24.7% 9.07% 13.6% 312

Wavelet 21.8% 5.4% 8% 57

Median 24.6% 10.2% 6.6% 24

Filter

Table 1: Performance comparison. The standard forecast-

ing approach without artifact correction features is used as

a comparison baseline. GMSE , GRAE and GF ER refer to

the achieved performance gain in Mean Square Error (MSE),

Relative Absolute Error(RAE) and Forecast Error(FER). Time

then refers to the average computational time of various ap-

proaches.

5. Conclusion

In this paper, artifact correction methods are pro-
posed to enhance ICP signal monitoring of TBI patients.
Based on our observation, a scale-based filter was pro-
posed to identify the artifacts. Moreover, to ensure the
performance of the proposed filter will not be unduly
influenced by artifacts, robust scale estimator, MAD,
was employed. We also observed that the ICP signal
is non-stationary. Therefore, three artifact detection ap-
proaches were proposed based on three non-stationary
signal processing techniques, namely the EMD, wavelet
transformation and median filter. The detected artifacts
were then imputed based on the ARIMA model with
AIC order selection.

The strengths and weakness of the proposed ap-
proaches were investigated and compared both theoret-
ically and experimentally. According to our study, all
three proposed approaches achieve significant perfor-
mance gains. But, for online diagnostic or prognostic
applications, we recommend the median filter approach,
for it is computationally efficient and, at the same time,
achieves satisfactory performance gains.
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