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ABSTRACT
Objective. Our primary objective is to demonstrate and sta-
tistically justify that forecasting models that utilize tempo-
ral information of the historical readings of ICP and related
parameters are superior, in terms of performance, compared
with models that do not make use of temporal information.

Material & Method. 82 traumatic brain injuries patients,
who were admitted between 2002 to 2007 and were continu-
ously monitored on ICP for more than 24 hours, are selected
for the study. Together with ICP, MAP and PbtO2 were also
monitored, and PRx was calculated as a moving correlation
between ICP and MAP.

The development trends of ICP and the related parame-
ters are measured by first segmenting the time-series data
into multiple periodic windows. The development trend of
each periodic window is then discretized into three classes
— elevate, stay or reduce — based on the concept of “trend
line”. A systematic framework is developed to compare
the forecast performance between the temporal and non-
temporal models.

Findings. Experimental results demonstrate that the uti-
lization of temporal information directly leads to a consid-
erable boost in trend forecasting performance (on average
20% relative performance gain was achieved). Moreover, the
performance gain is confirmed to be statistically significant
(p-value < 0.0001) based on a paired t-test.

1. BACKGROUND
Traumatic Brain Injury (TBI) is a major public health

problem with significant socioeconomic implications [14]. To
prevent secondary ischemic brain injury, continuous moni-
tor and optimization of intracranial pressure (ICP) through
protocol-driven therapies [1, 3, 13, 17] have become the stan-
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dard practice in many neurocritical care units. Research on
TBI patient monitoring has been primarily focusing on pre-
dicting the patients’ outcome based on the values of ICP [6,
7, 15, 16], the dynamic variability of ICP [2, 4], or the com-
binations of ICP and other physiological parameters, such
as mean arterial pressure (MAP), brain tissue oxygenation
(PbtO2) and pressure reactivity index (PRx) [14].

Different from the prior works, this study focuses on fore-
casting the development trend of ICP. That is to say, we aim
to predict, in the next time frame of monitoring, whether the
ICP of the patient will rise, stay relatively stable or decrease.
ICP development trend forecasting is a valuable tool to TBI
patient monitoring. It can be used as an alarm for more
intensive monitoring, and it allows early preparation and
opens up more treatment options. We propose to forecast
the development trend of ICP by utilizing the temporal in-
formation of ICP and the related parameters —MAP, PbtO2

and Prx. However, in this study, we do not aim to develop
an optimum forecasting model. Our primary objective is to
demonstrate and statistically justify that forecasting models
that utilize temporal information of the historical readings
of ICP and related parameters are superior, in terms of per-
formance, compared with models that do not make use of
the temporal information. We call the former group of mod-
els “temporal” models and the latter ones “non-temporal”
models.

2. MATERIAL & METHODS
Patients and Monitoring.
This analytical study was conducted based on the moni-

toring data of TBI patients, who were admitted to the neu-
rocritical care unit of a tertiary hospital between January
2002 to December 2007. In particular, 82 patients, who un-
derwent invasive monitoring of ICP, MAP and PbtO2 for
more than 24 consecutive hours and were connected to a
bedside computerized system, were selected for the study.
Local ethics committee approval was obtained prior to com-
mencement of the study.

All 82 patients had a CT brain scan performed before their
admission to the neurocritical care unit. After informed con-
sent was obtained, intraparenchymal probes were inserted
based on the CT findings. ICP was contiously monitored
using a fiber-optic intraparenchymal gauge (Codman and
Shurtleff, Taynham, MA), and Licox polarographic Clark-
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type microcatheters (Integra Neuroscience, Plainsboro, NJ)
were inserted into peri-lesional brain tissues to measure the
brain temperature and PbtO2. MAP was measured through
an arterial line from the radial artery using a standard pres-
sure monitoring kit (Biosensors International Pte. Ltd.,
The Netherlands). The continuously monitored physiolog-
ical readings were sampled and recorded every 5 sec via a
computerized system. The PRx was calculated as a moving
correlation between the last 30 consecutive samples of ICP
and MAP readings. All patients underwent multi-modality
monitoring with continuous recording of clinical data on a
Hewlett-Packard Carevue System.

Patients were managed in accordance to the guidelines for
severe TBI management [3]. ICP of patient was optimized
based on an incremental regimen to maintain ICP < 20
mmHg and CPP > 60 mmHg. First-tier ICP control treat-
ment included elevation of bed to 30◦, sedation of propofol
(2−10mg/kg/h), and adequate analgesia (intravenous mor-
phine 2-5 mg/h). Boluses of 20% mannitol (2 mg/kg up to a
plasma osmolarity of 320 mosmoI/L) were administered, if
there was an sudden increase in ICP. Second-tier measures
then included paralysis, cooling of core body temperature
to 36◦C and institution of a barbiturate comma, which is
achieved with intravenous thiopentone 250 mg boluses of
over 10-20 min (up to a total dose of 500-1000 mg) with a
maintenance dose of 125-500 mg/h titrated to ICP control
or to maintain burst suppression on EEG. Surgical decom-
pression was used as the final stage of therapy for scenarios
where the above medical therapy failed.

ICP Development Trend Forecasting
This study addresses the problem of ICP development

trend forecasting. The study aims to demonstrate that mod-
els that utilize temporal information in development trend
forecast are superior to non-temporal models. Continuous
monitoring data of four physiological parameters — ICP,
MAP, PbtO2 and PRx — were collected for this study. Note
that necessary medical intervention were administered to the
patients to maintain their ICP to be below 20 mmHg. These
interventions usually induce a sudden reduction in ICP and
thus interrupts our trend study. Therefore, to minimize the
effect of intervention, only data points in between two inter-
vention were used for the study. A systematic performance
evaluation framework is developed to compare the forecast-
ing performance of “temporal” and “non-temporal” models.
Before we introduce the framework, let us first discuss how
the development trend is measured.

Measurement of Development Trend
The monitoring data of ICP and related parameters, as

shown in Figure 1 (a), are continuous time-series data. We
measure the development trend of the time-series data by
first segmenting the continuous data into multiple windows
of a fix width. We call these windows the “periodic win-
dows”. In this study, the width of the window is set as one
hour. After the continuous time-series data is segmented
into periodic windows, we then apply a straight line to fit the
data points within each periodic window. The data segmen-
tation and trend line fitting process is graphically illustrated
in Figure 1 (a). The fitting line is formulated as:

y = αt+ yo (1)

where α refers to the gradient(steepness) of the line; t refers

Figure 1: (a) Proposed method for development
trend measurement in continuous ICP monitoring
data. (b) Proposed framework for evaluating the
benefits of temporal information utilization in ICP
development trend forecasting.

to the time points and yo is the offset. This fitting line is
known as the “trend line” [20] in financial and economical
data analysis. It is widely used to describe the development
trend of economic growth, price index, etc. In this study,
a Linear Regression model [22] was employed to calculate
the trend line of each periodic window. Based on the fitted
trend line, we further discretize the development trend of a
particular periodic window, wi, into 3 classes: elevate, stay
or reduce. The discretization follows the following formula:

Twi =

 +1 “elevate” if αwi > 0
0 “stay” if αwi = 0
−1 “reduce” if αwi < 0

(2)

Based on the above measurement, we can then trans-
form the time-series monitoring data into development trend
data, in which each record consists of the discretized trend
of ICP, MAP, PbtO2 and PRx. For a particular periodic
window wi, the trend record is mathematically denoted as
Twi =< T ICP

wi
, TMAP

wi
, TPbtO2

wi
, TPRx

wi
>.

Forecasting of Development Trend
Given the development trend data of n previous periodic

windows, {Tw1 , · · · , Twn}, the forecasting task is to predict
the development trend of ICP at the next periodic window
wn+1, T ICP

wn+1
.

Non-temporal forecasting models predict the development
trend of ICP at periodic window wn+1, T ICP

wn+1
, based on the

trend information of the related parameters, MAP, PbtO2,
PRx, at wn+1. Thus, for non-temporal models, the “trend
feature vector” is:
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Fn+1 =< TMAP
wn+1

, TPbtO2
wn+1

, TPRx
wn+1

> (3)

Moreover, to reflect the differences in the correlations be-
tween ICP and MAP, PbtO2 and PRx, a weight vector Ω is
employed, where

Ω =< ωMAP , ωPbtO2 , ωPRx > (4)

The non-temporal models then can be generically defined
as:

T ICP
wn+1

= f(Ω ◦ Fn+1) (5)

where ◦ refers to the Hadamard product (a.k.a. pairwise
product) [11] and f(.) refers to the prediction function, which
is determined by the employed machine learning algorithm.
Machine learning algorithms are applied to “learn” the op-
timum values for the weight vector Ω via training with the
previous development trend data {Tw1 , · · · , Twn}.

Simplicity is the biggest advantage of the non-temporal
models. However, these models may compromise on their
prediction accuracy, because they fail to capture the tem-
poral correlation between the predicting ICP trend and the
previous trends ICP and related parameters.

The temporal model that we propose, on the other hand,
predicts the ICP development trend based on the heuristic
that: how ICP and the other related parameters previously
evolved significantly affects how ICP is going to evolve next.
Guided by this heuristic, we expand the feature vector to
capture the temporal information. For a periodic window
wn+1, the “expanded trend feature vector” is:

F ′n+1 =< Fn+1, T
ICP
wn

,Fn, · · · , T ICP
wn+1−k

,Fn+1−k > (6)

where Fi is the trend feature vector of wi defined by Equa-
tion 3 and k is a user-defined parameter. As shown in the
Equation 6, the expanded feature vector F ′n+1 captures not
only the current trend feature Fn+1 but also the previous
ICP development trends and trend feature vectors. Param-
eter k then indicates how far back the history is captured in
the expanded feature vector. k is set to 3 for this study. Cor-
respondingly, we have an expanded weight vector Ω′. The
temporal forecasting model can then be expressed as:

T ′ICP
wn+1

= f(Ω′ ◦ F ′n+1) (7)

Similar to non-temporal models, the values of the ex-
panded weight vector Ω′ are “learned” with machine learn-
ing algorithms based on the previous development trend
data. Compared with non-temporal models, the temporal
model is more complicated (having larger feature and weight
vectors) and may requires more time for the optimum model
to be “learned”. However, we believe that, by capturing the
temporal information, the temporal model can outperform
non-temproal models in terms of trend forecasting perfor-
mance.

A systematic framework is developed to compare the fore-
casting performance of the temporal and non-temporal mod-
els. The mechanism of the framework is graphically illus-
trated in Figure 1 (b). First, the time-series data was seg-
mented into periodic windows (1 hour per window), and
development trend of each window was captured based on

the concept of trend line and Equation 2. Then, the non-
temporal and temporal trend feature and weight vectors
were formulated based on Equation 3 & 6. After that, a
same set of machine learning algorithms were employed to
learn both the temporal and non-temporal models. Finally,
the forecasting performance of both models were compared,
and the significance of the performance difference was sta-
tistically evaluated.

3. RESULTS & DISCUSSION
To evaluate the forecasting performance of both the non-

temporal and temporal models, multiple machine learning
algorithms are employed. The selected algorithms are rep-
resentative algorithms that are widely used by the research
community. These selected algorithms include: Aggregat-
ing One-Dependence Estimators (AODE) [23], Ada-Bossting
with Decision Tree (AdaBoost-J48) [24, 21], Bayesian Net-
work with K2 & TAN (BayesNet-K2/TAN) [5, 8], Lazy Bayesian
Rules (LBR) [25], Logistic Regression (LogReg) [12], Naive
Bayesian Classifier (Naive Bayes) [9] and Support Vector Ma-
chine (SVM) [19]. All the selected algorithms were imple-
mented with WEKA (Waikato Environment for Knowledge
Analysis) [10] and were executed using default parameters.
The forecasting performance was determined by a 10-fold
cross-validation and was evaluated with three metrics, in-
cluding the raw predictive accuracy, the AUC (area under
curve) and the F-measure.

Statistical Results
The average forecasting performance of non-temporal and

temporal models are compared in Table 1 along with the
relative performance gain achieved by the temporal model.
The relative performance gain is calculated as:

Gainrelative =
Ptemp − Pnon−temp

Pnon−tem
× 100% (8)

where Ptemp and Pnon−temp refer to the performance metric
readings of the temporal and non-temporal models. It can
be observed that, for the non-temporal model, the predic-
tive accuracy is only slightly better than random guesses, i.e.
50%. On the other hand, by utilizing the temporal informa-
tion of the data, the temporal model achieves a considerable
higher predictive accuracy. On average, the temporal model
is 16.8% better in raw accuracy, 20.5% better in AUC and
17.5% better in F-measure. The performance advantage of
the temporal model is also graphically illustrated in Fig-
ure 2.

To justify that the performance gain achieved by the tem-
poral model is not due to random chances but statistically
significant, a paired t-test was conducted. The results of the
paired t-test are summarized in Table 2. We observe that,
for all three performance metrics, the absolute performance
gains achieved by the temporal model fall within the 95%
confidence interval. Moreover, we also calculated the actual
p-values. As shown in Table 2, all the p-values are less than
0.0001, which implies that the performance difference be-
tween the temporal and non-temporal models are extremely
significant.
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Model
Non-Temporal Approach Temporal Approach Relvative Gain

Accuracy AUC F-measure Accuracy AUC F-measure Accuracy AUC F-measure
AODE 51.4% 0.488 51.8% 62.4% 0.66 62.2% 21.4% 35.2% 20.1%

AdaBoost-J48 52.7% 0.53 52% 61.5% 0.632 61% 16.7% 19.7% 17.3%
BayesNet-K2 53.3% 0.56 51.4% 62.3% 0.648 62.5% 16.9% 15.7% 21.6%
BayesNet-TAN 52.2% 0.515 52.2% 62.0% 0.644 61.7% 18.8% 25% 18.2%

LBR 56.1% 0.549 55.9% 63.3% 0.647 62.9% 12.8% 17.9% 12.5%
LogReg 53% 0.547 52.8% 62.1% 0.645 62.6% 17.2% 17.9% 18.6%

Naive Bayes 52.7% 0.528 52.4% 61.9% 0.638 62% 17.5% 20.8% 18.3%
SVM 55.1% 0.55 55% 62.4% 0.613 62.7% 13.2% 11.5% 13.8%

Average 53.3% 0.533 52.9% 62.2% 0.641 62.2% 16.8% 20.5% 17.5%

Table 1: Performance comparison between the non-temporal and the prosed temporal forecasting approaches.

Figure 2: Boxplot for performance comparison be-
tween the non-temporal and the prosed temporal
forecasting approaches.

Discussion
It is demonstrated with experimental results and statisti-

cal analysis that the temporal forecasting model that utilizes
the temporal information of ICP and related parameters sig-
nificantly outperforms the non-temporal model. However,
we also observe that the absolute accuracy of the temporal
model is still not very satisfying. This is because, in this
study, the temporal forecasting model is only proposed to
demonstrate the advantage of temporal information utiliza-
tion in ICP development trend forecasting, and the model
is not fully optimized. To achieve a higher forecasting accu-
racy, the proposed temporal model can be improved in the
following aspects: 1. Segmentation of data. In the current
model, the time-series data is segmented into periodic win-
dows with a fixed width. This strategy obviously lacks of
flexibility. A better strategy will be to determine the width
of periodic windows dynamically based on the variability of
the time-series data. That is to say, when the data is rela-
tively stable, a window with big width can be assigned; on
the other hand, when the time-series data varies dramati-
cally, windows with smaller width should be assigned to fully
capture the development trends of the data. 2. Fitting of
trend line. In the study, a simple linear regression algorithm
is applied to fit the trend line to the time-series data. To
enhance the performance of the model, more sophisticated
line fitting algorithms and strategies can be explored. 3.

Accuracy AUC F-measure

Average
16.8% 20.5% 17.5%

Rel. Gain
Average

8.93% 0.106 9.25%
Abs. Gain
95% Conf.

(7.88%, 9.96%) (0.087, 0.128) (7.91%, 10.58%)
Interval
p-value < 0.0001 < 0.0001 < 0.0001

Table 2: Statistical significance of the performance
difference between non-temporal and temporal fore-
casting approaches.

Discretization of development trend. Based on Equation 2,
the development trend of ICP is discretized into only three
distinct classes: elevate, stay or reduce. This discretization
method is fairly coarse and suffers from huge information
loss. E.g. It fails to capture the difference between a 9
mmHg elevation in ICP and a 0.1 mmHg elevation. To ad-
dress this, a finer and more adaptive approach can be em-
ployed. 4. Tuning of machine learning algorithms. In this
study, all the machine learning algorithms were applied with
the default setting. Parameter tuning is required to achieved
the optimum predictive performance. E.g. for SVM, issues,
including kernal selection, parameter tuning and optimiza-
tion setting, all have to be carefully examined to achieve the
optimum performance.

4. CONCLUSION
This study aims to demonstrate that temporal forecast-

ing models that utilize temporal information of the histor-
ical readings of ICP and related parameters are superior,
in terms of performance, compared with the non-temporal
models. A systematic performance comparison framework
has been developed to achieve this objective. Based on the
experimental results, we observe that the temporal forecast-
ing model outperforms the non-temporal model consider-
able, and, moreover, the performance difference was proven
to be statistically significant.
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