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Abstract—Traffic modeling and identification is an important
aspect of traffic control today. With an increase in the demands
on today’s transportation network, an efficient system to model
and understand the changes in the network is necessary for policy
makers to make timely decisions which affect the overall level
of service experienced by commuters. This paper proposes a
novel approach to traffic modeling and identification using a
Self-adaptive Fuzzy Inference Network (SaFIN). The study is
performed on a set of real world traffic data collected along the
Pan Island Expressway (PIE) in Singapore. By applying a hybrid
fuzzy neural network in the traffic modeling task, SaFIN is able to
capitalize on the functionalities of both the fuzzy system and the
neural network to (1) provide meaningful and intuitive insights
to the traffic data, and (2) demonstrate excellent modeling
and identification capabilities for highly nonlinear traffic flow
conditions.

Index Terms—Traffic modeling, fuzzy system, neural network,
SaFIN.

I. INTRODUCTION

A pressing force for changes and adjustments in a trans-
portation system is an increase in the demands on the system
caused by an increase in the number of motor vehicles.
This is a direct consequence of growing affluence, where
vehicle ownership tends to rise with increasing income [1].
Subsequently, the performance of a transportation system is
evaluated by its ability to move the increase influx of people,
goods and equipments from one place to another place in
an effective and reliable manner. On the other hand, traffic
congestion on a highway occurs when the traffic demand
exceeds the operational capacity of the highway. It is one of
the most serious challenges threatening the effectiveness of
a transportation system, since traffic congestion can lead to
other associated environmental and economical issues, such
as reduced capacity, reduced safety, increased gas emissions,
increased fuel consumption, and increased travel times leading
to productivity losses [2].

A most direct way to access the traffic flow conditions
is to measure the level of service that is experienced by
commuters [3]. This means that a high level of service is
expected when the forecasted traffic flow is small; while the
expected level of service drops when the forecasted traffic
flow is huge. In such a case, pre-emptive measures can then

be adopted to improve the level of service and prevent the
onset of congestion when a clearer understanding of the traffic
conditions is available (for example, raising the tolls on a
road during peak hours to limit the number of vehicles, or
increasing the gasoline tax to reduce the overall number of
vehicles on the roads). Thus, a model that provides a high
level of forecasting accuracy, together with a high level of
interpretability, is desired.

This paper proposes a novel approach to traffic modeling
and identification using a Self-adaptive Fuzzy Inference Net-
work (SaFIN) [4]. The objective is two folds; namely, (1) to
provide valuable and meaningful insights to the numerical raw
traffic data; and (2) to provide an efficient way to model the
traffic flow conditions. Since SaFIN is a hybrid fuzzy neural
network, it possesses the functionalities of the two individual
systems. This means that the system possess high-level human-
like reasoning mechanism where information can be expressed
as a set of human-interpretable linguistic IF-THEN fuzzy
rules; while concurrently utilizing low-level neural learning
for the modeling and identification of the system.

The rest of the paper is organized as follows. Section II
presents the hybrid system SaFIN for traffic modeling, where
the architecture and the reasoning mechanisms in SaFIN are
discussed. This is followed by a description of the highway
traffic flow data in Section III. Section IV presents the ex-
perimental results achieved. Lastly Section V concludes the
paper.

II. SAFIN: SELF-ADAPTIVE FUZZY INFERENCE NETWORK

SaFIN is a five layers fuzzy neural network as shown in
Fig. 1. Layer 1 consists of the P number of input dimensions
Ip for p = 1 . . . P . Layer 2 represents the antecedent nodes
Ajp , where there are Jp number of fuzzy clusters in Ip. Layer
3 consists of the rule nodes Rk for k = 1 . . . K. Layer 4 rep-
resents the consequent nodes Clq , where there are Lq number
of fuzzy clusters in an output dimension Oq. Finally layer 5
is the Q number of output dimensions. As seen, the input
vector is denoted as x = (x1, . . . , xP ); the corresponding
desired output vector is denoted as d = (d1, . . . , dQ); and
the computed output vector is denoted as y = (y1, . . . , yQ).
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Fig. 1. Architecture of a Self-adaptive Fuzzy Inference Network (SaFIN).

Layer 3 of SaFIN encrypts the rulebase of the system where
each rule node encodes an IF-THEN Mamdani-type fuzzy
rule [5] given as in (1):

Rk : IF x1 is A(k)
j1

and . . . and xP is A(k)
jP

THEN y1 is C(k)
l1

and . . . and yQ is C(k)
lQ

(1)

where A(k)
jp

(resp. C(k)
lq

) is the j-th antecedent (resp. l-th
consequent) node associated with the p-th input (resp. q-th
output) dimension that is connected to the rule node Rk. Each
antecedent and consequent node is then defined as a gaussian
membership function: µ(c, σ; x) = e−((x−c)2/σ2) such that c
and σ are the centre and width of the function respectively.

There are two main components to the design of SaFIN;
namely, the fuzzy partitioning of the input-output dimensions
and the rule generation procedure. Initially, there are neither
fuzzy partitionings in the input-output spaces nor fuzzy rules
in the system, i.e., there are no nodes in hidden layers 2–4. A
localized learning of the fuzzy labels using the single-pass Cat-
egorical Learning Induced Partitioning (CLIP) technique [4],
inspired from the behavioral category learning process demon-
strated in humans, is first carried out. This enhances the
interpretability of SaFIN such that the resultant fuzzy clusters
are highly ordered. New clusters are incorporated into the
system when the knowledge extracted from the incoming
training tuple is novel as compared to existing clusters in
the system; while refinements are made to existing clusters to
incorporate the new knowledge. The initialization performed
in an input dimension p is described as in (2):

c1p = xp

σ1p = R

(√
− (minp −xp)2

log α ,
√
− (maxp −xp)2

log α

)
(2)

where R (σ1, σ2) := 1
2 [σ1 + σ2] defines a regulator function,

and α is the minimum membership threshold. The boundary
for the domain is given as [minp, maxp]. Subsequently, the

formation of a new fuzzy cluster AJp(t)+1 in the input dimen-
sion p can be described using (3):

cJp(t)+1 = xp

σJp(t)+1 =

⎧
⎨

⎩

σR if jL
p = NULL

σL if jR
p = NULL

R
(
σR, σL

)
otherwise

(3)

where

σR = R

⎛

⎜⎝

√

−

(
cjR

p
−xp

)2

log α , σjR
p
(t)

⎞

⎟⎠

σL = R

⎛

⎜⎝

√

−

(
cjL

p
−xp

)2

log α , σjL
p
(t)

⎞

⎟⎠

.

The immediate left and right neighbours of the newly created
cluster are denoted as AjL

p
and AjR

p
respectively, where

jL
p =

⎧
⎨

⎩

NULL if cjp ≥ xp

for 1 ≤ jp ≤ Jp(t)
arg mincjp <xp |cjp − xp| otherwise

jR
p =

⎧
⎨

⎩

NULL if cjp ≤ xp

for 1 ≤ jp ≤ Jp(t)
arg mincjp >xp |cjp − xp| otherwise

.

Refinements are made to immediate left and right neighbours
of the newly created cluster as follows: σjL

p
(t+1) = σjR

p
(t+

1) = σJp(t)+1 for jL
p ̸= NULL and jR

p ̸= NULL. The
same fuzzy clustering process is performed for each output
dimension.

The second key component in the design of SaFIN is the
formulation of the rulebase. Firstly, a fuzzy rule is formulated
to capture the knowledge from each of the incoming training
tuples. A fuzzy rule R⋆ is created for an incoming training
tuple such that the antecedents and consequents of R⋆ are{

Aj⋆
p

}P

p=1
and

{
Cl⋆q

}Q

q=1
respectively, where Aj⋆

p
is the best

matched fuzzy cluster in the p-th input dimension and Cl⋆q is
the best matched fuzzy cluster in the q-th output dimension.
The best matched cluster of an input (and output) dimension
is given as follows: j⋆

p = arg maxjp µjp(cjp , σjp ; xp). If R⋆ is
novel, it is inserted into the rulebase with an initial weight of
1. Else, the weight of the identical fuzzy rule with the same
antecedent and consequent segments in the existing rulebase
is increased by 1. Finally, conflicting rules with lower weights
are deemed as outliers and are deleted from the system. This
approach ensures that SaFIN maintains a unique and consistent
rulebase that is able to provide a most aptly description to the
application problem.

As seen from Fig. 1, the reasoning process of SaFIN is rep-
resented by solid arrows where the input vector x is presented
to the system at layer 1. The system then performs inference
based on the input vector by propagating the information
through layers 2 to 4. Consequently, the system produces a
computed output vector y at layer 5. To ensure a logically
tractable reasoning mechanism, the most commonly adopted
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Fig. 2. Location of site 29 along the Pan Island Expressway in Singapore.

Compositional Rule of Inference (CRI) [6] is employed in
SaFIN. The generic operations for SaFIN are defined as
follows. The activation functions of each layer M ∈ {1 . . . 5}
are denoted as a(M), and the corresponding output for an
arbitrary node is denoted as o:

Layer 1:
op = a(1) (xp) = xp .

Layer 2:

ojp = a(2) (op) = µjp(cjp , σjp ;xp) .

Layer 3:

ok = a(3)
(
o(k)

j1
, . . . , o(k)

jP

)
= min

p∈{1...P}
o(k)

jp
.

Layer 4:

olq = a(4)
(
o
(lq)
1 , . . . , o

(lq)
Klq

)
= max

k∈{1...Klq}
o
(lq)
k .

Layer 5:

yq = oq = a(5)
(
o1q , . . . , oLq

)
=

∑
lq∈{1q...Lq} olqclqσlq∑

lq∈{1q...Lq} olqσlq

.

III. DATA COLLECTION AND EXPERIMENTAL SETUP

The set of highway traffic flow data employed is described
in this section. Data was collected from a five lanes section
along the Pan Island Expressway (PIE), Singapore, in both
the east-bound and west-bound directions towards Changi and
Jurong respectively. In this paper, only the east-bound direction
is considered, where the data collection is performed at site
29 located at exit 15 on the expressway. Data samples were
collected from inductive loop detectors installed beneath the
road surface. Since 1996, the Land Transport Authority has
pre-installed such detectors along major roads in Singapore to
facilitate the collection of traffic flow data.

Fig. 2 shows a picture of the location where the data was
collected. There are a total of five lanes; namely, three straight
lanes for the main traffic (lanes 1–3), and two exit lanes

Fig. 3. Traffic flow densities of the three straight lanes along PIE at site 29.

(lanes 4–5). Only data from the three straight lanes are used
in this paper. They are correspondingly denoted as L1, L2,
and L3. Each data sample has four attributes; namely, the
time t at which the traffic flow data was measured, and the
traffic flow densities for the three straight lanes during time
t. Subsequently, SaFIN is employed to model the traffic flow
trend. After which, the trained model is used to predict traffic
flow density of a lane (L1, L2 or L3) at the time t + τ for
τ = 5, 15, 30, 45 and 60 minutes.

Fig. 3 shows the traffic flow data for lanes L1–L3 spanning
over a period of six days from 5-th to 10-th September 1996.
The data is divided into three cross-validation groups, hereby
denoted as CV1, CV2 and CV3 respectively. The training data
for each cross-validation group is extracted accordingly from
the period labelled in Fig. 3.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the modeling performances of SaFIN
for the highway traffic flow data. The effectiveness of SaFIN
is evaluated in terms of the mean squared error MSE and
the Pearson correlation coefficient R achieved between the
computed output of the model and the actual traffic flow
density of the highway. These measures help to determine the
suitability of employing SaFIN for the detection of changes
in the demands on the highway usage throughout the entire
experimental duration (i.e. the duration of interest). The per-
formance of SaFIN is subsequently benchmarked against the
following models; namely, Hebb-R-R [7]; RSPOP [8]; MLP
(with a configuration of 4 input nodes, 10 hidden nodes and
1 output node); GenSoFNN [9], EFuNN [10]; DENFIS [11];
and eFSM [12].

Fig. 4 illustrates the identified fuzzy clusters in the time
domain and those for lanes L1–L3 for the training set of CV1
when τ = 5 minutes. The distributions of the raw numerical
data are also shown for each of the three lanes in the figure.
The identified fuzzy clusters are well-ordered where clear dis-
tinct semantic fuzzy meanings can subsequently be attached.
As seen, the fuzzy clusters identified in SaFIN for lanes L1–
L3 coincide with the peaks of the distributions as marked by



0.2 0.4 0.6 0.8 1
0

1

M
em

be
rs

hi
p

Time

1 2 3
0

1
Lane L1

1 2
0

1

M
em

be
rs

hi
p

Lane L2

0 1 2
0

1
Lane L3

Morning Afternoon Night L M H

M HL L M H

-x-         Distribution of training data -----         Fuzzy clusters

L – Low         M – Medium          H – High

Fig. 4. Fuzzy clusters identified by SaFIN for the time domain, and for lanes L1–L3 (with distributions of raw data) for the training set of CV1 when τ = 5
minutes.

the dotted circles. Although there are very low distributions
of data closer to the upper bounds of the three lanes, it is
observed that the distributions immediately before the peaks
are closest/at the zero mark. Hence, SaFIN identifies a cluster
near the upper bound of each lane to cater for this peak. This
figure demonstrates the tailored approach adopted in SaFIN
for the fuzzy partitioning, where the numbers and positions
of fuzzy clusters identified correspond to the distributions of
the original numerical data. Subsequently, this allows traffic
officers and policy makers to have an intuitive grasp of the
knowledge embedded in the raw numerical data.

Using the semantic fuzzy labels in Fig. 4, twenty-three
fuzzy rules are identified by SaFIN as listed in Table I.
From the table, four rules correspond to the morning hours,
fourteen rules correspond to the afternoon period, and five
rules describe the night time traffic. During the early morning
and late night hours, the amount of traffic flowing through
lanes L1–L3 range from Low to Medium. This means that,
there is only light to moderate amount of traffic on the
highway during these periods. Comparing this observation to
the training set of CV1 in Fig. 3, this is indeed the case.
Subsequently, the predicted traffic demand on the highway
during these periods is moderately low. This corresponds to
the usual work-life cycle of most people, where majority of
the highway users are resting during the early morning and
late night periods. On the other hand, most of the identified
rules describe traffic flow for the afternoon period, i.e. , during
the day when most people travel for work and errands. Within
this period, the traffic flow in lanes L1–L3 can range from
Low to High. This means that variations in the highway usage
can be observed throughout the day period, where half of the
fourteen rules describe the peaks hours of the day when people

TABLE I
MAMDANI-TYPE FUZZY RULES IDENTIFIED IN SAFIN FOR CV1 WHEN

τ = 5 MINUTES.

Rule Time t L1(t) L2(t) L3(t) L1(t + 5)

1 Morning L L L L

2 Morning L L M L

3 Morning L M M L

4 Morning M M M M

5 Afternoon L L L M

6 Afternoon L M L M

7 Afternoon L M M M

8 Afternoon L M H M

9 Afternoon M L L M

10 Afternoon M L M M

11 Afternoon M M L M

12 Afternoon M M M M
⋆13 Afternoon M M H M
⋆14 Afternoon M H M M
⋆15 Afternoon M H H M
⋆16 Afternoon H M M M
⋆17 Afternoon H H H M
⋆18 Afternoon H M H H

19 Night L L L L

20 Night L M L L

21 Night L M M L

22 Night M M L L

23 Night M M M L

L–Low; M–Medium; H–High



rush to/off work (i.e. rules ⋆13–⋆18), with the remaining
describing the day hours when people are already at work.
Subsequently, the predicted traffic demand on the highway
during the day period is moderately high (as compared to that
during the early morning and late night hours). Hence, the
set of identified fuzzy rulebase in SaFIN provides a logical,
sound, and intuitive description to the highway traffic flow,
where the demands on the highway usage for different hours
of the day can be effectively accounted for.

The recall and prediction performances of SaFIN for lane
L1 when τ = 5 minutes are shown in Fig. 5. The results are
shown for the three cross-validation classes CV1–CV3. As
seen, the recall performances on the training sets for CV1–
CV3 (i.e. Fig. 5(a),(c),(e)) are excellent, with more than 0.9
achieved for the R values. To illustrate that SaFIN has learnt
from the training sets to generalize the underlying knowledge
to the entire duration of interest, the trained model is sub-
sequently employed on the testing datasets. The prediction
performances of SaFIN on the unseen data for CV1–CV3
are shown in Fig. 5(b),(d),(f) respectively. Compared to the
recalling performances, the prediction performances of SaFIN
have deteriorated slightly with larger reported MSE values,
and smaller reported R values. Despite that, SaFIN is able
to perform excellent prediction on the testing datasets, where
the peaks and the valleys of the traffic flow densities (i.e.
the increase and decrease in demands on the highway usage)
can be clearly identified. This result demonstrates the superior
modeling and generalization abilities of SaFIN such that it is
able to provide a good prediction of the highway traffic flow
density, where the changes in demands on the highway usage
are effectively accounted for.

The prediction performances of SaFIN are benchmarked
against MLP and existing neuro-fuzzy systems, and the con-
solidated highway traffic flow prediction results are shown
in Fig. 6. The average R value and the average MSE value
from the three cross-validation groups CV1–CV3 for each
prediction horizon are plotted with respect to the lanes L1–
L3. As seen, SaFIN is among the top performers in this
highway traffic flow prediction application such that it is able
to consistently achieve one of the highest average R and the
lowest average MSE under different time horizons. This is
particularly prominent when τ = 60 minutes where SaFIN is
ranked either the first or second positions for all three lanes
L1–L3; while most of the benchmarking models have greater
errors due to a longer time lag in the prediction horizon.
Through this benchmarking with other existing models, SaFIN
has demonstrated a consistently excellent performance such
that it is able to perform good prediction within the various
time periods of interest.

Table II shows the average performances of all the models
for this highway traffic flow density modeling task. As clearly
shown, SaFIN demonstrates superior modeling potential, sec-
ond only to Hebb-R-R, in terms of the average benchmarking
measures achieved. Despite employing a time-consuming and
computationally intensive iterative post-training phase to re-
cursively identify a reduced set of fuzzy rules with the aim of

TABLE II
AVERAGE PERFORMANCES FOR THE TRAFFIC FLOW PREDICTION.

Model Average R (± Std. Dev.) Average MSE (± Std. Dev.)

Hebb-R-R 0.864 (± 0.046) 0.114 (± 0.042)

RSPOP 0.834 (± 0.041) 0.146 (± 0.038)

MLP (4-10-1) 0.847 (± 0.065) 0.130 (± 0.055)

GenSoFNN 0.813 (± 0.028) 0.164 (± 0.037)

EFuNN 0.798 (± 0.050) 0.189 (± 0.041)

DENFIS 0.831 (± 0.051) 0.153 (± 0.054)

eFSM 0.840 (± 0.043) 0.154 (± 0.040)

SaFIN 0.862 (± 0.043) 0.118 (± 0.037)

a good accuracy, Hebb-R-R performs only marginally better
than SaFIN. Comparatively, the performance of SaFIN is much
more consistent and stable as shown by the small standard
deviations about the average benchmarking indexes. Although
GenSoFNN achieves a lower standard deviation in the R value,
it should be noted that the average performance of GenSoFNN
is among the poorest under both the benchmarking measures.
This result demonstrates the excellent modeling potential of
SaFIN for the highway modeling task; while maintaining a
highly consistent and stable performance under varying time
horizons (i.e. different time periods of interest).

V. CONCLUSION

This paper demonstrates the suitability and effectiveness
of employing SaFIN for the modeling of highway traffic
flow density. As the amount of traffic flow on the highway
is directly related to the service of quality experienced by
commuters, it is important to have an efficient system to
perform a good and reliable traffic flow prediction. Subse-
quently, adjustments can be made to existing traffic planning
policies when the forecasted demand on the highway exceeds
the operational capacity of the highway (i.e. when traffic
congestion occurs) such that a comfortable level of service
can be provided. This is possible when a clear understanding
of the traffic conditions is available.

Experimental results based on real-world traffic flow data
collected from the Pan Island Expressway in Singapore are
presented. Results showed that SaFIN is able to provide
intuitive insights to the raw numerical data by providing
semantic fuzzy labels and fuzzy rules to explain the traffic
flow density on the highway throughout the day, i.e. , the
changes in the demands on the highway usage throughout
the duration of interest can be effectively accounted for in
SaFIN. The modeling and generalization abilities of SaFIN
are then compared against MLP and some existing neuro-fuzzy
systems. Results showed that SaFIN is able to achieve superior
performances with varying prediction horizons, while most of
the benchmarking models are not able to handle the larger time
lag in the prediction. In addition, SaFIN has also achieved a
more consistent and stable performance for the highway traffic
flow prediction when compared to the other models.
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Fig. 5. Recall and prediction of traffic density on lane L1 when τ = 5 minutes.
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