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Abstract—This paper addresses an important problem known as 
EEG non-stationarity in Brain-computer Interfacing. We 
propose a novel technique called Dynamically Weighted 
Classification with Clustering (DWCC), which explores hidden 
states in non-stationary EEG using a modified k-means 
clustering method by combining cosine distance measure and 
mutual information criterion. DWCC builds a set of classifiers, 
one for each pair of clusters from different classes. A 
dynamically-weighted classifier ensemble network is trained to 
combine the outputs of the classifiers, where we propose to 
dynamically assign the weight of a classifier for each test sample 
based on its distances to the cluster centres associated with the 
classifier. Experimental results on publicly available BCI 
Competition IV Dataset 2a yielded a mean accuracy of 81.5% 
which is statistically significant (t-test p<0.05) compared to the 
baseline result of 75.9% using a single classifier. 

Keywords-Brain–computer interface (BCI); motor imagery; 
clustering; classification. 

I.  INTRODUCTION 

A brain–computer interface (BCI) is a communication 

system that does not require any peripheral muscular activity 

[1]. BCI research aims at the automatic translation of neural 

commands into control signals to control applications such as 

text input programs, electrical wheelchairs or neuroprostheses. 

The field of BCI has been developed with the goal of providing 

a direct means of communicating internal brain states to the 

external world [1]. 

A typical BCI system includes the acquisition of brain 

signals, the processing and classification of the acquired 

signals, the feedback of the interpreted brain state, and the use 

of the classified signals to perform a task. A major challenge in 

classification of EEG signals is their non-stationarity. The brain 

signals substantially vary after the initial calibration, such that 

a classifier trained on one session can rarely be reused in the 

next experimental session. Long periods of low performance 

have often been observed even when the classifier is trained 

with data obtained on the same day. Typically, the models 

developed using machine learning techniques are based on the 

assumption that underlying distributions of features are more or 

less static. However, EEG data are apparently non-stationary 

due to various factors underlying the distributions change 

between training and testing sessions. This non-stationarity 

impedes the continuous use of BCI, particularly for the 

disabled. Therefore BCI is a difficult and inspiring application 

area with respect to nonstationarity.  

Non-stationary of EEG signals has been identified to be 

caused by factors such as, changes in the physical properties of 

the sensors, variabilities in neurophysiological conditions, 

psychological parameters, ambient noise and motion artifacts. 

Hence, a few methods such as, Bayesian transduction, transfer 

learning, active learning and distribution matching have been 

suggested to address this problem [2].  

Studies have shown that classifiers trained using clustered 

Common Spatial Patterns (CSP) features are able to capture 

generic and invariant discriminative features of the BCI task 

and address the non-stationarity inherent in EEG due to subject 

fatigue, attention, or diverse strategies for motor imageries 

across different sessions [3]. The effectiveness of clustering 

and partitioning methods in general pattern classification has 

also been empirically examined in several studies [4-10]. In 

addition, theoretical analyses of some of these methods are 

available in [7-11]. In this study we apply clustering on 

features selected after CSP transformation and build multiple 

classifiers on the clustered feature sets in order to address the 

non-stationarity in the EEG signals.   

Partitioning the training data can be achieved by clustering 

the features based on geometric distribution. Given 

multivariate data, clustering finds a partition of the points into 

clusters such that the points within a cluster are more similar to 

each other than to points in different clusters [12]. It has been 

suggested that clustering can also be considered as a method to 

encode background knowledge, allowing the transfer of 

inferential steps, and schemes that facilitate to identify 

common features between two situations [2].  

Ensemble classifiers are known to combine different 

classifiers in a complementary manner resulting in improved 

performance [12]. The base classifiers and the aggregation 

technique used in ensemble methods are vital factors that affect 
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the classification accuracy [13]. The decision of the ensemble 
classifier is obtained by weighting the classification decisions 
of individual classifier by the normalized reciprocal of the 
distance of each test sample to the cluster centres associated 
with each classifier in the ensemble. In this study, Support 
Vector Machine (SVM) classifiers were employed as the base 
classifiers.  

Our main contribution is proposing a novel Dynamically 
Weighted Classification with Clustering (DWCC) to partition 
the training data and to combine the classification decisions 
from multiple classifiers in order to address the non-stationarity 
inherent in EEG data. In the proposed DWCC method, the 
EEG data is partitioned into clusters after obtaining the features 
using Common Spatial Patterns (CSP) algorithm. The clusters 
are class specific, and the clustered features are combined to 
form training data sets for multiple classifiers. The multiple 
classifiers are trained independently on the clustered features to 
form an ensemble classifier. 

II. METHODS 

The proposed DWCC framework consists of two steps: a 
training step and a test step. In the training step the EEG data 
used for training the classifiers are subject to bandpass filter 8-
30Hz and is subject to CSP algorithm. The selected features are 
subject to supervised clustering. The clustered features are used 
to train multiple classifiers considering all possible 
combinations of clusters from the two classes. The figure 1 
illustrates the framework of the DWCC method.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Schematic diagram of the DWCC method. 

The CSP filters that are found in training step are used for 
projection of test data. Features for the test data are selected 
after the CSP transformation and the multiple classifiers will 
give their classification decision independently. The classifier 
decisions are combined using a weighted majority voting 

method. The weights given to each individual classifier in the 
ensemble is based on a similarity measure calculated by taking 
the normalized reciprocals of the distances from the test data 
sample to the cluster centres that contain the training data for a 
given classifier. 

A. Common Spatial Patterns 
Proper preprocessing of EEG data is vital for the ultimate 

success of the overall BCI system. Non-informative 
dimensions of the data can be discarded and the features of 
interest for classification can be selected by Common Spatial 
Patterns [14].   

The CSP algorithm was first presented in [15] as a method 
to extract the abnormal components from EEG, using a set of 
patterns that are common to both the normal and the abnormal 
recordings and have a maximally different proportion of the 
combined variances. CSP was later extended to classification 
of movement related EEG signals [14]. The first and last few 
CSP components (the spatial filters that maximize the 
difference in variance) are used to classify the trials with high 
accuracy.  

The main concept of CSP is to use a linear transformation 
to project multichannel EEG data into low–dimensional spatial 
subspace by a projection matrix. Each row of this projection 
matrix consists of weights for each channel.  If the random 
variable  NRx∈G  represents the EEG data, recorded through N 
electrodes, from which the intention of the BCI user 

{ }MccCc ,...1=∈ is to be inferred. Denote the class 

probability by ( ) MiCP i ,...,1, =  and assume that the EEG 
data conditioned on any class follows a Gaussian distribution 
with zero mean, i.e.,  ( ) ( ) .,...,1,,0| | MiRNCxP

iCxi == G
G  Then a 

linear transformation LNRw ×∈  can be found  where 

,NL < such that for finite training data using the reduced 
dimension ˆ .Tx W x= This transformation maximizes the 
variance of two class signal matrices and leads to an increased 
classification accuracy in comparison to using xG . These 
features x̂ are clustered in the subsequent step.  

B. Clustering of EEG 
The EEG data is clustered based on cosine distances among 

the feature vectors. K-Means algorithm with different distance 
measures such as Euclidean, Mahalabonis, cityblocks, and 
cosine were attempted for the clustering of the features. 
However, Euclidean and Mahalabonis distances were not able 
to cluster the features satisfactorily. Cityblocks and cosine 
distance measures were successful in clustering the features 
with the k-Means algorithm. However, clusters generated using 
cosine distance measures were found to contain maximum 
diversity. Therefore, k-Means clustering with cosine distance is 
employed in generating the initial clusters, which are optimized 
using the information theoretic criterion.   
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Feature 1   
Figure 2.  Clustered Features. 

 

Different numbers of clusters from two clusters up to seven 
clusters were considered. The ensemble classifiers are 
combined in a novel method in order to maximize the overall 
classification accuracy. Ensembles with four to forty nine 
classifiers were trained on the corresponding clusters. It was 
observed that as the number of classifiers increased the overall 
increase of performance is marginal while the computational 
complexity increases quadratically. Best performance was 
observed when the feature space was partitioned to 3 clusters 
resulting in 9 classifiers in the ensemble.  The figure 2 
illustrates the case of three clusters in a two dimensional 
feature space. 

C. Information Theoretic Criterion for Clustering 
 

The initial clusters generated by k-Means algorithm are 
optimized using mutual information maximization procedure 
[16]. In this information theoretic criterion, Given a data set 

{ }NxxX ,...,1= of N data items in dR , a partitional 

clustering { }kccC ,...,1=  is a way to divide X into K non-
overlapped subsets. If C is the space of all possible K-cluster 
partitions of X, the optimal clustering *C  in C would have 
maximum mutual information between the data and the 
clustering: ( ){ }XCI

Cc
C ;

maxarg*

∈
= .  

This is also equivalent to, ( ){ }* arg min
| .C H X C

c C
=

∈
  

This criterion is based on the argument that the optimal 
clustering would maximize the information shared between the 
clustering and data. It has been shown that, by using Havrda-
Charvat’s structural entropy measure the conditional entropy 
can be estimated without any assumptions about the 
distribution of the data.  

Havrda-Charvat’s structural entropy is defined as: 

( ) 1,0,112
1

11 ≠>−−= ∑
=

−− αααα
α

K

k
kpH . 

With 2=α the following quadratic Havrda-Charvat’s 
entropy (with the constant coefficient discarded for simplicity) 
gives: 

 ∑
=

−=
K

k
kpH

1

2
2 1 . 

The conditional quadratic Havrda-Charvat’s entropy of X 
given C is defined as:  

( ) ( ) ( )∑
=

==
K

k
kk cCXHcpCXH

1
22 || .  

With this measure of entropy the objective function can be 
expressed as 

 ( ) ( )== ∑
∈

kk
Cc

cCXHcpC |minarg 2
* .  

The Gaussian kernel in d-dimensional space: 

( )
( )

−−
=− 2

2

2
2

2
exp

2
1,

σπσ
σ

ax
axG d ,  

where σ  is the kernel width parameter and a  is the center 
of the Gaussian window. The density estimation of X can be 

expressed as, ( ) ( )∑
=

−=
N

i
ixxG

N
xp

1

2,1 σ .  
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The quadratic entropy of ( )xp  can be estimated as, 

( ) ( ) ( )∫ ∑∫ −−=−=
=x

N

i
i

x

dxxxG
N

xpXH
2

1

2
2

2
2 ,

1
11 σ

Because convolution of two Gaussians remain a Gaussian the 
above can be expressed as 

( ) ( )∑∑
= =

−−=
N

i

N

j
ji xxG

N
XH

1 1

2
22 2,

1
1 σ . 

In a similar fashion, 

( ) ( )∑ ∑
∈ ∈

−−==
ki kjcx cx

ji
k

k xxG
n

cCXH 2
22 2,

1
1| σ  

where kn is the number of the data items in cluster kc . Given 

this estimate the objective function can be written as 

( ) ( )−= ∑ ∑∑
= ∈ ∈∈

K

k cx cx
ji

k
k

Cc
ki kj

xxG
n

cpC
1

2
2

* 2,
1

maxarg σ . 

Here the probability of encountering the cluster kc in C is 

N
nk , therefore the conditional entropy based objective 

function becomes, 

* arg max ( ),
c C

C CE C
∈

=   

where, 

( )
2

2,
1

1
exp .

4i j k

K
i j

x x c
k k

x x
CE C

n σ∈
=

− −
=∑ ∑   

  Therefore, by maximizing )(CCE the conditional 
entropy criterion is minimized. 

D. Classifier Ensemble 
The clustered features are combined to form training 

feature sets that are used to train individual classifiers in the 
ensemble of classifiers. The dynamic fusion method to 
combine classifier decisions in the ensemble to achieve higher 
classification accuracies exploit the geometrical relationships 
among clustered training samples to quantify the similarity 
between test data and training data.  

If the classifiers in an ensemble are not of identical 
accuracy, then it is reasonable to give the more competent 
classifiers more power in making the final decision. Label 
output for a test sample x  by a classifier i in an ensemble of L 
classifiers can be represented in terms of degree of support for 
each class j as, 

=
otherwise

jinxlabelsDif
d i

ji ,0

,1
,

,  

where iD represents ith classifier in the ensemble. The 

discriminant function for class j obtained through weighted 
voting by L classifiers in the ensemble can be expressed as, 

( ) ,
1

L

j i i j
i

g x b d
=

=∑ ,  

where ib  is a coefficient for decision given by classifier iD  

regarding class j. Thus the value of the discriminant function is 
the sum of the coefficients for these members of the ensemble 
whose output for x  is class j.  

)1(max ,
1

1,
1

"""ji
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i
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For a c class classification scenario, classifier decisions 
from constituent classifiers are combined through weights bi  as 
shown in equation (1). The class k which gets the maximum 
support through the weighted majority voting scheme, given in 
equation (1), is chosen as the ensemble’s final decision.   

In the proposed DWCC method, the weights bi are actively 
calculated for each test sample based on the distances from a 
test sample to the centres of the clusters consisting of training 
data. The reciprocals of the distances from the test sample to 
the cluster centres are classwise normalized and summed 
together. For the two class case, let the clusters that make up 
the training features for a classifier i be denoted as C1 and C2. 
The reciprocal distance from a given test sample to the two 

cluster center can be denoted as, 1cr and 2cr . The values 

normalize for each class where there are m clusters for each 
class,  

∑
=

= m

c
c

c
c

r

rNr

11
1

1
1   and 

∑
=

= m

c
c

c
c

r

rNr

21
2

2
2 .  

The final weight bi assigned to each classifier i is calculated 
as sum of the normalized reciprocal distances associated with 
the two particular clusters that make up the specific classifier,   

21 cci NrNrb += . 

Support Vector Machine (SVM) classifiers were employed 
as the base classifiers in all the ensembles.  

III. EXPERIMENTS 

The data set 2A of the fourth BCI Competition [17] was 
considered in this study. This data set is composed of EEG data 
collected from 9 subjects that had been recorded during two 
sessions on different days for each subject. The synchronous 
BCI data had been collected for four different motor imagery 
tasks. The imagination of movements of the left hand (class 1), 
right hand (class 2), both feet (class 3), and tongue (class 4) 
had been considered as the four motor imagery tasks. Each 
session had been made up of 6 runs separated by short breaks. 
One run had included 48 trials (12 for each of the four possible 
classes), amounting to a total of 288 trials per session. 



 

 

The subjects had been seated on an armchair in front of a 
computer screen and at the beginning of a trial (t = 0 s), a 
fixation cross had appeared on the black screen. Short acoustic 
warning tones had also been presented at the start of the trial. 
After two seconds (t = 2 s), a cue had been presented. This cue 
could have been in the form of an arrow pointing either to the 
left, right, down or up (corresponding to one of the four classes 
left hand, right hand, foot or tongue). The cue had appeared 
and stayed on the screen for 1.25 s and this was expected to 
induce the subjects to perform the desired motor imagery task. 
The subjects had been instructed to carry out the motor 
imagery tasks until the fixation cross disappeared from the 
screen at t = 6 s without any feedback on their performance. A 
short break had been given before the next trial and this 
procedure had been repeated for each of the 6 runs in a session. 

EEG signals had been recorded from 22 scalp positions, 
mainly covering the primary motor cortices bilaterally. The 
signals had been sampled at 250 Hz and had been subjected to 
a bandpass filter between 0.5 Hz and 100 Hz. The sensitivity of 
the amplifier had been set to 100 μV. An additional 50 Hz 
notch filter had been utilized to suppress line noise. 

IV. RESULTS AND DISCUSSIONS 
The performance of the DWCC framework was evaluated 

under different number of clusters. The number of component 
classifiers in the ensemble depends on the number of clusters. 
Too many clusters result in smaller partitions of training data 
that lead to over fitting and result in lower classification 
accuracies. Therefore only six different cluster numbers, from 
two to seven clusters, resulting in four to forty nine individual 
classifiers respectively were considered.  

TABLE I.  CLASSIFICATION ACCURACY RATES (%) ON DATA SET 2A OF 
BCI COMPETITION IV.  

Su
bj

ec
t  

B
as

el
in

e 
 DWCC: Number of Clusters  

2 3 4 5 6 7 

A1  87.3 95.2 95.4 94.8 94.4 94.8 94.6 
A2  56.8 63.8 64.2 64.0 62.5 63.8 63.4 
A3  93.1 96.9 96.8 96.1 96.5 95.2 95.9 
A4  63.6 66.7 67.2 66.7 66.8 66.4 65.4 
A5  54.86 75.9 75.9 75.5 75.4 75.7 75.5 
A6  62.6 64.9 65.2 63.6 65.8 63.7 64.5 
A7  77.1 78.1 78.1 77.9 78.1 78.4 78.7 
A8  94.2 96.1 96.1 96.3 95.2 95.7 95.5 
A9  93.8 92.6 93.1 92.7 93.2 92.8 93.2 

 
Mean  75.92 81.26 81.48 81.01 80.86 80.77 80.90 
S.D.  16.65 14.31 14.21 14.409 14.058 14.084 14.4 

P  - 0.039 0.032 0.047 0.047 0.059 0.048 
P-values denote results of pairwise t-tests against the baseline. 

The results obtained for BCIC IV data set 2a are shown in 
table 1. The nine subjects are denoted as A1 to A9. All 
classifiers were trained on the training data obtained on the 
previous date and were evaluated on test data which had been 
collected on a subsequent date. The highest classification 
accuracies for each subject are shown in boldface. The mean 
accuracies and standard deviations calculated for all the 
subjects are denoted as mean and S.D. in the table 1. Highest 

mean accuracy of 81.48% is achieved by the DWCC with three 
clusters.  

The baseline classification utilizes a single SVM classifier. 
The features used for training the baseline SVM classifier were 
subject to the same preprocessing steps as the other cases 
except clustering. The observed mean baseline accuracy is 
75.92%. The baseline result was compared against the results 
obtained using DWCC method. A series of pairwise t-tests 
were carried out between the baseline results and each of the 
DWCC approaches. The P-value denotes the probability, under 
the null hypothesis (difference of means is zero), of observing a 
value as extreme or more extreme of the test statistic t. i.e. at a 
confidence level of 0.05 if the P value is less than 0.05 then the 
two means are significantly different. 

The mean accuracies from DWCC method are found to be 
significantly higher than the baseline, except in the case of six 
clusters, at a confidence level of 0.05. It should be noted that 
accuracies of all subjects show improvements over the baseline 
in all DWCC based cases irrespective of the number of 
clusters. Results suggest that the proposed method can 
significantly improve classification accuracies in most cases. 

The figure 2 shows the clustered features for the case where 
features were clustered into three partitions. In line with our 
basic assumption that non-stationary sources form clusters in 
the feature space that are distinctly apart from one another, it is 
clear that clustering has been able to uncover encoded 
background knowledge. Therefore, it is suggestive that 
inherent non-stationarity in EEG data can be effectively 
addressed by the proposed clustering based DWCC method.  

V. CONCLUSION 
In this study, a novel framework to improve classification 

of non-stationary EEG data named DWCC was proposed. In 
DWCC approach EEG data is partitioned using clustering and 
multiple classifiers are trained on the partitioned features. It is 
assumed that regions in the feature space that are substantially 
apart from other features are due to non-stationarity in EEG 
signals. Training data for multiple classifiers are selected by 
supervised partitioning of the features of the two class training 
data. The decisions of ensemble classifiers are obtained by 
weighted majority voting of the classification decisions of 
individual classifiers. A novel combination method based on 
the distance of the test sample to the constituent clusters that 
form the specific classifier is used to give weights to the 
classifier decisions. 

The proposed DWCC method has been evaluated on a 
publicly available data set from the BCI Competition IV. 
Empirical results suggest that the method can yield statistically 
significant improvement in classification accuracy for non-
stationary EEG data. 

Future work based on this approach might include an 
adaptive clustering framework where clusters will be added 
and removed in an online data driven manner. 
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