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Abstract—In this paper, a robust seizure detection system using
scalp EEG signal is presented. Two most important and obvious
characteristics of seizure EEG, signal variance, and frequency
synchronization are carefully chosen as seizure detection indexes.
To extract the representation of EEG variance, a spatiotemporal
correlation structure is constructed based on space-delay covari-
ance matrices with multi-scale temporal delay. The frequency
synchronization of EEG is represented by a regularity index
derived from wavelet packet transform. The extracted represen-
tations are combined to form a high-dimensional feature vector
with redundant information. In order to reduce the redundancy,
feature selection is performed using mutual information (MI)
based on best individual features. The optimized set of features
form a more compact feature vector for each 2-s epoch of multi-
channel EEG. Feature vectors are then classified into ictal or
interictal class using a linear support vector machine (SVM). To
evaluate the proposed seizure detection system, unbiased leave-
one-session-out cross-validation using clinical routine EEG from
7 patients are performed in experiments. The proposed method
obtains average accuracy of 91.44% and average latency of 6.82
s, which outperforms other 7 commonly used methods. It is also
demonstrated that the performance of our method is more robust
since the standard deviation of results among patients is smaller
than other methods.

I. INTRODUCTION

Epilepsy is a common neurological disorder affecting ap-
proximately 1 % of the world population. It is an electro-
clinical syndrome, characterized by paroxysmal electrical dis-
charges of cortical neurons accompanied by clinical manifesta-
tion of epileptic seizures. Electroencephalography (EEG) is the
diagnostic tool to detect these interictal epileptiform discharges
and ictal electrographic seizures.

In the routine EEG laboratory, detection of electrographic
seizures is done by EEG technologists and electroencephalog-
rapher who have to go through multi-cannel EEG data visually.
This process is both time consuming and laborious. Seizures
might be missed if the technologists and/or EEGer are inex-
perienced. Automatic detection of electrographic seizures by
a computer software will make the detection of electrographic
seizures much easier and more accurate. In the ICU setting,
automatic detection of EEG seizures could help medical and
nursing teams to administer immediate intervention to patients
developing seizures under monitoring.

In this preliminary research, we investigate the fundamental
mechanism of the seizure onset in order to develop a reliable
seizure detection system. Based on the fact that during seizures
scalp EEGs could record rhythmic synchronized paroxysmal
EEG activities, we proposed the hypothesis that at the onset
of seizure,

i) EEG variance across different channels is relatively small;
ii) EEG time-dependent variance in each channel is rela-

tively small;
iii) EEG power is concentrated in a small range of lower-

frequency components compare to normal EEG.

We aim to find a reliable method for automatic seizure de-
tection based on the characteristics mentioned above. Reliable
and sensitive reflections of above characteristics of seizure
EEG can be obtained using feature extraction algorithms.
Several types of features have been investigated to discriminate
EEG signal between ictal and interictal states. Some univariate
features such as the power spectral density [1], entropy [2],
median absolute deviation (MAD) [3], wavelet coefficients [4]
and autoregressive modeling coefficients [5] for single-channel
EEG were commonly used. In [6], [7], several univariate
features, such as mean, curve length, energy, nonlinear energy
and six power were combined together to form a hybrid
higher-dimensional feature vector for identification of ictal
and interictal state. However, due to the missing of correlation
information across channels, the single-channel-based methods
cannot provide satisfactory performance for seizure detection.

In [8], the authors utilized a multi-scale spatiotemporal
correlation structure to extract variations of brain dynamic
for predicting seizure using intracranial EEG. The multi-
scale spatiotemporal correlations were correlations among all
channels and across temporal delay with multi-scale. It well
represented the variance across different channels and different
time epochs of each channel. Unfortunately, this method
only considered the variance in time domain but ignored the
important characteristics in frequency domain. From frequency
domain point of view, EEG power is concentrated in a small
range of relatively-low-frequency components during onset of
seizures. In this work, to make good use of this characteristic,
a frequency regularity index which represents the degree of
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EEG rhythmic synchronization is adopted. We combine the
spatiotemporal correlation and the frequency regularity index
to form a more robust seizure index, which is sensitive to
both amplitude and frequency change. However, the combined
seizure index is high-dimensional and contains redundant
information. To reduce the redundancy, features selection
are performed using mutual information (MI) based on best
individual features with parzen window. The selected features
form a more compact feature vector and classified into ictal
or interictal class using linear SVM.

The main contributions of this work are:
i) By investigating the fundamental mechanism of epileptic

seizure, we propose three most important characteristics
of seizure EEG for guiding the development of seizure
detection algorithm, and verify them through signal anal-
ysis.

ii) By combining the spatiotemporal correlation and fre-
quency regularity index, a more robust seizure detection
algorithm is developed, which is sensitive to both the fre-
quency and amplitude(energy) variance of EEG signals.

iii) The detection results of 43 seizure data from 7 epilepsy
patients demonstrate that our method obtains higher ac-
curacy and robustness compare to the other 7 commonly
used methods in literature.

II. METHODS

A. Overview

The block diagram in Fig. 1 presents the architecture of
the seizure detection procedure. The detector passes 2-second
epochs of the 18-channel EEG through a bandpass filter of 0.5-
30 Hz. Feature extractor extracts spatiotemporal correlation
and frequency regularity. A trained feature selector obtains
features best characterizing the morphology of multi-channel
EEG. Finally, the obtained features are passed into a trained
SVM to get the identification result of current EEG epoch.

Multi-scale Space-
delay correlation

Support Vector 
Machine

Frequency 
Regularity Index

Zero-phase 
bandpass filter 

(0.5-30 Hz)

Scalp EEG 
signal

Seizure 
Alarm

Feature
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Fig. 1. Seizure Detector Architecture

B. Data Recordings and Preprocessing

To evaluate the performance of the proposed seizure detec-
tion algorithm, we use an EEG dataset provided by Singapore
General Hospital (SGH) after ethics approval. The dataset
contains routine EEG signals of 7 epilepsy patients, who are 3
females and 4 males aged between 28-77. The duration of each
routine EEG recording session is around 30 to 50 minutes. The
EEG signal was recorded using standard 10-20 system with
sampling rate of 256 Hz. Visually inspection of both EEG and
video were undertaken by experienced technician for marking
the seizure events. The labeling results can be served as ground
truth in this work.

In Table I, the age, gender of the patients, and the duration
and number of seizures are shown to demonstrate the charac-
teristics of the EEG dataset.

TABLE I
EEG DATASET CHARACTERISTICS

Subjects Gender Age Duration(sec) No. of Seizures
1 Female 38 1829 7
2 Female 77 1839 2
3 Male 70 1993 2
4 Female 28 2225 3
5 Male 54 1988 2
6 Male 65 3872 22
7 Male 47 3060 5

summary N.A. 58.22±17.45 309.52 min 43

The EEG data are preprocessed via bandpass filtering be-
tween 0.5 and 30 Hz, which is a frequency band that captures
seizure onset of various electrographic manifestations [4], [9],
[10]. The bandpass filter is designed to be a zero-phase to
avoid phase shifting during filtering. Bipolar EEG montage
which includes 18 channels is used to reduce the effect of
common noise/artifact such as EMG etc. The continuous EEG
recording is segmented into 2 s epochs with 1 s overlap by a
moving window processing.

C. Spatiotemporal Correlation with Multi-scales Delay

Eigenspectrograms derived from spatial correlation matrices
have been recently proposed for analyzing seizure dynamics in
multichannel intracranial EEG signals [11]. Later, Willamson
et. al extend it to multi-scales spatiotemporal correlation in
[8] to do seizure detection in intracranial EEG signals. To the
best of our knowledge, there has been no study yet applied
this method to scalp EEG signals for seizure detection.

Furthermore, in [8], feature extraction was done using 15
s window of data, combine with the 15 s delay in the largest
delay scale, the detection latency was at least 30 s, which
is not ideal for seizure detection since earlier detection and
treatment of seizure is essential for preventing serious brain
damage. In this work, we utilize a 2 s moving window plus 1
s delay in the largest delay scale, which dramatically shorten
the detection latency. In addition, by carefully setting the delay
scales, we eliminate the overlapping that come out from the
setting in [8], which may reduce the feature redundancy.

The spatiotemporal correlation structure is constructed as
following.

Consider ! (!) as the !th epoch of the preprocessed multi-
channel EEG signals, ! (!) ∈ "!!×!" (512×18 in this study),
where #" is the number of samples in each epoch and ## is
the number of channels. Define "(!) as the second half part
of each epoch ! (!), "(!) ∈ "256×18. As such, the start of
each successive 1 s epoch "(!) is contiguous with the end of
the previous epoch "(! − 1).Define %$ as the time delay in
the &th scale in unit of seconds. Then a set of time-delayed
multichannel EEG signal can be written as

#(!)$ = ["(!),"(! − %$), . . . ,"(! − (#% − 1)%$)] (1)



where !! = "! (" is the scale coefficient, here set as 1/4),
# = 0, 1, 2, 3. The number of time delay %" is set to be 2 for
the largest scale and 4 for the other three scales, so that the
delayed matrix will not exceed the 2 s duration of each epoch
! (&). By this way, we eliminate the overlapping that come
out from the setting in [8].

These procedure result in a new multi-scale time-delayed
matrix

"(&) = ["(&)0,"(&)1,"(&)2,"(&)3] (2)

where

"(&)0 = [#(&),#(& − 1)] (3)

"(&)1 = [#(&),#(& − 1
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A space-delay covariance matrix $(&)! ∈ (#!#"×#!#" and
correlation matrix %(&)! ∈ (#!#"×#!#" are calculated as

$(&)! =
1

%$
)("(&)!)

% )("(&)!), (4)

%(&)! =
1

%$
*("(&)!)

% *("(&)!), (5)

where )(⋅) normalizes each column of "(&)! to zero mean,
and *(⋅) normalizes each column of "(&)! to zero mean and
unit variance.

Then we calculated the eigenvalues of %(&)!,

&(&)! = eig(%(&)!), (6)

and order the eigenvalues from largest to smallest. These form
the eigenspectrum of %(&)!.

Fig. 2 shows two epochs of 18 channel EEG signals of
ictal and interictal state respectively. From the figure, we
can clearly see the EEG signal difference between ictal and
interictal state. Compare to interictal state, the EEG signal in
ictal state has higher amplitude but smaller variance across
time and channels, while the frequency components are more
concentrated to a lower frequency range.

Fig. 3 shows the space-delay correlation matrix %(&)3 at
the smallest delay scale, extracted from the two epochs shown
in Fig. 2. Each 4× 4 block along the main diagonal contains
the within-channel correlations for the 4 time-delay scales for
each of the 18 channels, while the off-diagonal blocks contain
the cross-channel correlations. It is clearly illustrated in Fig.
3 that the cross-channel correlations are higher in interictal
state than in ictal state, which indicate that the cross-channel
variance is larger in interictal state. This is consistent with the
i) and ii) of hypothesis we proposed in Section I.

Fig. 4 displays the eigenspectrogram with the smallest delay
scales of a whole session of patient 1, which contains 1809
s EEG recording (we remove the first 20 seconds calibration
data). Eigenspectrogram is a matrix consisting of a sequence
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Fig. 2. Two epochs of multichannel EEG: ictal and interictal

of eigenspectra. Each column of the matrix contains the eigen-
spectrum from a single epoch, and the bottom row contains
the maximum eigenvalues.

Fig. 4 reveals much lower value of covariance across chan-
nels and time intervals during ictal states. This is consistent
with the i) and ii) of hypothesis we proposed in Section I that
variance across channels and time intervals is smaller in ictal
state than in interictal state.

Eigenspectrums are also computed at the other 3 larger
delay scales. For each epoch, 252 eigenvalues in total are
derived from 4 delay scales and serve as the feature for
representing the variance across channels and time intervals.

D. Frequency Regularity Index

Because EEG power is concentrated in a small range
of relatively low-frequency components during seizure, the
rhythmic regularity of the EEG signal can be considered as an
indicator of ictal states. In this paper, we utilize a frequency
regularity index of EEG signals motivated by [12], [13] to
represent the rhythmic regularity of EEG signal.

To calculate the regularity index, it is necessary to find
suitable frequency band that captures most significant rhythmic
activities during ictal state. To make it simple, we choose
the frequency range of 0.5 to 30 Hz, as a large number of
epileptic seizures are associated with rhythmic activities in
this frequency range [9], [10]. Certainly, this frequency band
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Fig. 4. Eignespectrogram of an entire session. Red markings indicate seizures
manually marked by EEG technician.

can be further defined subject-dependently to improve the
performance.

The wavelet transform has well known data compression
and time-frequency filtering capabilities and is promising for
seizure detection [4]. Our method is based on the wavelet
packet transform. Different from wavelet transform, the de-
composition procedure of wavelet packet transform is done in
both lower and higher frequencies, so that it offers a greater
range of possibilities for signal analysis than the wavelet
decomposition.

we use a moving window to obtain several 2 s EEG epoches
from the original continuous EEG, and bandpass filter each
epoch between 0.5 and 30 Hz. Consider ! as the a 2 s epoch
of the preprocessed multichannel EEG signals, ! ∈ !!!×!" ,
where "" is the number of samples in each epoch and "#

is the number of channels. Define " ∈ !!!×1 as one channel
EEG signal in the multichannel EEG epoch ! . We decompose
" using # level wavelet packet (WP) transform within the
frequency band (0.5-30 Hz).

The wavelet packet decomposition is done until the the last
decomposition level with maximum frequency resolution. For
a time epoch with sampling rate $" and window length % , the
WP tree has # = #&'2$" ∗ % decomposition level (excludes
the root level). In our experiment, sampling rate $" = 256
Hz and window length % = 2 s, so the last decomposition is
9th level. At the last level, there are 512 nodes each of which
contains one coefficient associated with bandwith of 0.25 Hz
($"/2$+1).

Define #$! as the vector consists of all the coefficients at
node ", " = 1, 2, . . . , 2$ in last decomposition level # of the
WP tree. From #$!, " = 1, 2, . . . , 2$, choose the node #$%

which has the highest energy (defined as the summation of
all coefficients’ square values). The corresponding frequency
band of #$% is defined as dominant band $0 with a central
frequency +#. Suppose ,(-) = sin(2.+#-), the regularity index
!& can be written as

!& = max'

∣∣∣∣∣∣

∫∞
−∞ ,(-+ /)0(-)1-

√∫∞
−∞ ,2(-)1-×

∫∞
−∞ 02(-)1-

∣∣∣∣∣∣
(7)

which is the maximum normalized cross-correlation between
EEG signal 0(-) and ,(-). The higher value of !& indicates
more similarity between 0(-) and ,(-), which also means that
the power of EEG signal y(t) is concentrated in a narrow range
near central frequency +#. As such, the regularity index !& is a
good representation of rhythmic synchronization. In the feature
extraction step, !& is computed for each of the 18 channels
and form a 18 × 1 dimensional feature vector for one EEG
epoch.

The regularity index for the same EEG session as in Fig.
4 is plot in Fig. 5. It is demonstrated that the EEG frequency
regularity is much higher in ictal state than in interictal state,
which is consistent with the iii) of hypothesis we proposed in
Section I.
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Fig. 5. Regularity index of an entire session. Red markings indicate seizures
manually marked by EEG technician.

E. Feature Selection and Classification

We combine the spatiotemporal correlation, regularity in-
dex, power and entropy together as extracted feature vector,
which has dimension of 278×1. This high-dimensional feature
vector are reduced to 20-dimensional feature vector through
feature selection using mutual information (MI) method based
on best individual features with parzen window.

Support vector machine have recently demonstrated im-
pressive performance in seizure prediction [4], [8]. In the
classification stage of the seizure detector, the reduced feature
vector is assigned to the ictal or interictal class by SVM
classifier.

The seizure onset is declared when 3 consecutive 2 s
epoches are classified as seizure. Requiring seizure activity
to last for 6 s prior to declaring a seizure event helps avoid
false alarm due to short-time seizure-like spikes in iterictal
state.

III. EXPERIMENTAL RESULTS

A. Performance Evaluation

The performance of the seizure detector can be evaluated
by specificity, sensitivity, accuracy and detection latency, as
defined below:

Sensitivity = TP/(TP + FN) (8)

Specificity = TN/(TN + FP) (9)

Accuracy = (TN + TP)/(TN + TP + FN + FP) (10)

Where TP=true positive, TN=true negative, FP=false positiv
and FN=false negative.

Consider "! is the time label of the end point of the first
3 consecutive ictal epochs in one seizure session marked by
our method , "" is the seizure event start point marked by
technician, the metric latency is defined as "! + 2− "".

B. Leave-one-session-out Cross-validation

For each patients, the entire session are firstly divided into
subsessions based on number of seizure event. Each subsession

start from the starting point of seizure event and end at starting
point of next seizure event. The performance is evaluated
through a ‘leave one-session out’ cross-validation, i.e., each
time keep one subsession as test dataset, the rest subsessions
as training dataset. For unbiased performance evaluation, the
label-dependant feature selection and classification algorithms
are trained only by training dataset. Then the test dataset is
passed into the trained model to get results for performance
evaluation.

C. Results
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Fig. 6. Accuracy comparison for each subject
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Fig. 9. Latency comparison for each subject

Figs. 6, 7, 8, 9 shows the results of the evaluation metrics,
accuracy, sensitivity, specificity and latency, based on 8 dif-
ferent feature extraction methods: median absolute deviation
(MAD) [3], wavelet coefficients (wavelet) [4], frequency regu-
larity (regularity) [12], spatiotemporal correlation (correlation)
[8], power (power) [1], entropy (entropy) [2], hybrid feature
(hybrid) [6] and our own method. Results for each of the 7
patients are illustrated in these figures, from which we can
see our proposed method shows an overall superiority over

the rest. Although our method may not necessarily be the best
method regarding each single subject, consider that some other
method may give very high performance on one subject but
give unsatisfactory performance on the other subjects, they
are not quite suitable for real clinical application, for which
system robustness is critical.

The average results of the 7 patients for the evaluation met-
rics: accuracy, sensitivity, specificity and latency, are shown in
Table II. The best results for each metric are marked as bold
typeface in the table.

For clearer illustration, the average results are plotted in
Fig. 10. We can see that our method outperforms the rest
methods refer to the average accuracy, sensitivity, specificity
and latency. Furthermore, the standard deviation (illustrated as
the error bar in the figure) of the results of our method are
smaller than other methods which indicates higher robustness.

IV. CONCLUSION

We proposed a hypothesis by investigating the fundamental
mechanism of epileptic seizure. A robust seizure detection
algorithm was developed based on this hypothesis. Spatiotem-
poral correlation structure that representing variance across
EEG channels and time interval was combined with frequency
regularity that representing frequency synchronization, to form
a more robust seizure index. The combined index can capture

TABLE II
AVERAGE RESULTS FOR COMPARISON

Subjects MAD(%) Wavelet(%) Regularity(%) Correlation(%) Power(%) Entropy(%) Hybrid(%) Our Method(%)
Accuracy 80.48±9.74 87.61±8.22 76.84±14.36 72.95±20.31 79.90±10.19 85.38±8.17 76.66±13.11 91.44±4.76
Sensitivity 79.68±10.31 88.04±6.03 77.31±13.21 74.82±22.00 75.68±11.34 81.68±9.96 75.12±11.85 88.99±4.62
Specificity 79.25 ±17.29 86.65±13.73 76.40±16.72 71.07±22.67 83.45±12.60 89.49±9.43 77.95±37.16 93.82±5.53
Latency 11.52 ±3.46 7.33 ±3.79 9.79±4.84 9.22±5.60 11.54±4.32 11.34±4.76 13.20 ±7.27 6.82±3.26
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Fig. 10. Compare performance metrics among algorithms



both amplitude and frequency changes. In addition, since the
combined feature vector is high-dimensional with redundancy,
feature selection was performed using mutual information
(MI) based method to obtain an optimized set of features
for more compact feature vector, which was later classified
by SVM. In experiments based on 43 seizure events from 7
epilepsy patients, 91.44% average accuracy and 6.82 s latency
was obtained using the proposed method. It was demonstrated
that the proposed method outperformed other commonly used
methods in both accuracy aspect and robustness aspect. This
may due to the fact that our feature extraction method captured
spatiotemporal features and spectral features at the same time
so that the seizure indexes used are more sensitive and robust.
The hypothesis we proposed was well verified through our
data analysis as well. We will continue to analyze much larger
dataset of epilepsy patients in order to develop more robust
subject-independent seizure detection system in the future.
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