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Abstract 

 
Traumatic brain injury (TBI) endangers many 

patients and lays great burden on the neural intensive-
care units in the whole world. To improve the outcome 
of TBI patients, it is desirable to forecast the 
intracranial Pressure (ICP) so to enable timely or 
early interventions to control the ICP level. Past 
research mainly focused on ICP pulse morphology 
analysis and ICP waveform forecast, but results were 
not satisfactory. In this paper, to forecast ICP 
continuous trends, we propose an autoregressive 
integrated moving average (ARIMA) ICP forecast 
online application with orders selection predicated on 
autocorrelation function (ACF) and partial 
autocorrelation function (PACF). Results show that the 
accuracy of ICP forecast improves significantly with 
our forecast model, compared with ARIMA based on 
Akaike information criterion (AIC) and artificial 
neural network approach. Besides, the forecast 
processing time of ARIMA model predicated on PACF 
and ACF is much shorter than ANN and ARIMA 
predicated on AIC . 
 
 
1. Introduction 
 
   Traumatic brain injury (TBI) causes heavy 
neurosurgical critical care workload worldwide. In 
United States alone, around 1.4 million suffers from 
TBI annually and nearly 5.3 million live with TBI-
related disabilities [1]. Generally, intracranial pressure 
(ICP) of TBI patients should be kept below 25 mmHg 
by medical treatment to improve survival rate [1]. As 
most current commercial neuromonitoring systems 
cannot predict the ICP, medical interventions are 
delivered to patients only after clinicians notice 
sustained and significant ICP trends. Therefore, it is 
critical to predict the future ICP trends for 
neuroclinicians to take timely treatment to save the TBI 

patients. In the past, extensive research has been 
directed to forecast of ICP hypertension by ICP pulse 
morphology analysis [2-3] and ICP waveform forecast 
[4-5], but the results were still not promising. In [2], 
twenty-four features in five categories (amplitude, time 
interval, pulse curvature, pulse slope, decay time 
constant) characterizing the ICP pulse morphology 
were shown to be useful in predicting ICP elevation. In 
recent years, discrete wavelet transform based artificial 
neural network algorithms were also applied to predict 
the exact ICP waveform, so as to identify the ICP trend 
[4-5]. However, satisfactory prediction results were 
reported for only up to three minutes.  
   In this paper, we propose an autoregressive integrated 
moving average (ARIMA) ICP forecast application 
with orders selection based on autocorrelation function 
and partial autocorrelation function. ICP elevation 
prediction may be viewed as a binary decision. Our 
research goes beyond the ICP elevation prediction, 
because we predict the continuous ICP trends to give a 
clearer picture and more information for clinicians. 
When the clinicians notice a dangerous upward trend 
which may lead to intracranial hypertension, they can 
then apply corresponding medical treatment according 
to prevent and control the impending intracranial 
hypertension. We applied the partial autocorrelation 
function (PACF) and the autocorrelation function 
(ACF) [6] in selecting the appropriate orders. We 
simulated online data streaming from twenty-seven 
patients’ ICP records collected twenty-seven patients’ 
ICP records from National Neuroscience Institute – 
Tan Tock Seng Hospital. We compared the ICP 
forecast accuracy of ARIMA model with orders 
selection on the basis of PACF and ACF and that of 
ARIMA model with orders selection on the basis of 
Akaike information criterion (AIC) [7]. Results of 
Wilcoxon matched pairs signed ranks test show that, 
the ICP forecast accuracy of ARIMA model with 
orders selection predicated on PACF and ACF is 
significantly superior to that of ARIMA model with 
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orders selection predicated on AIC, at the 5% level 
(p=0.05). In addition, the processing speed of ARIMA 
model with orders selection predicated on PACF and 
ACF is  much faster. 

To our best of knowledge, no ICP forecast 
application has been reported with forecast model 
selection based on visualizable PACF and ACF. In 
addition, no one has reported satisfactory ICP forecast 
for thirty minutes range.  
 
2. Methodology 
 
Nonstationarity of ICP 

 
   We forecasted the ICP mean of a future window 
based on the ICP mean extracted from past windows 
[8]. We divided the past ICP data into many time 
windows and further segment each time window into 
several finer sub-windows. Lower resolution is given 
to the remote data, while higher resolution to the recent 
data. We then derived the mean of the ICP for each 
past time window and its sub-windows as features for 
forecast. We first tested autoregressive moving average 
(ARMA) algorithm. ARMA worked well on relatively 
short ICP episodes (e.g, three minutes), which showed 
that short ICP episodes exhibits some ARMA 
behaviour. We then identified that ARMA did not 
work well for long (e.g., thirty minutes) ICP episodes, 
which were usually non-stationary. We chose ACF and 
Phillips-Perron unit root test to assess the stationarity, 
because the result can be quantified and visualized. 
This point was evidenced by the slowly dying patterns 
of the autocorrelation function plot of ICP episodes. 
This was further substantiated by the result that 
Phillips-Perron unit root test failed to reject the null 
hypothesis that the ICP is a unit root process with 
trend. Because the requirement of the data 
nonstationarity assumption, ARMA is not suitable for 
longer time horizon forecast.    
   Later we found that the nonstationarity problem in 
our ICP signal can be solved by differencing, which 
suggested that autoregressive integrated moving 
average (ARIMA) forecast model is suitable for our 
thirty minutes horizon ICP forecast. In patients’ ICP 
data collected, we did not observe significant 
seasonality by PACF test and ACF test [6], so seasonal 
autoregressive integrated moving average algorithm 
(SARIMA) is not advised. Hence, we consider 
autoregressive integrated moving average (ARIMA) 
algorithm for forecasting. We also attempted to predict 
the ICP using linear regression approach. However, the 
negative R2 (R2=1-SSerr/SStot) yielded suggested that 
linear regression approach does not fit with our ICP 
forecast application. 

 
ARIMA differencing order selection 
 
   As mentioned above, we solved the nonstationarity 
problem in our ICP signal by differencing, which was 
verified by the result of the ACF and Phillips-Perron 
unit root test. Usually, the nonstationarity was not 
significant in the first order differenced ICP data. If the 
nonstationarity can still be observed in the ACF of first 
order differenced ICP data, we can take higher order 
differencing on the ICP data, until the differenced data 
passes the Phillips-Perron unit root test and slowly-
dying pattern cannot be observed. Because the 
evolving trends in ICP vary from time to time, we 
implemented an algorithm shown in Fig. 1 to select the 
appropriate differencing order d for our ICP forecast 
application. Generally, we found that first order or 
second order differencing was enough to transform our 
data to be stationary for forecasting.  

 

 
 
Figure 1: Flow chart of differencing order d 
selection algorithm 
 
ARIMA autoregressive order and moving 
average order selection 
 

Besides differencing order d, an appropriate ARIMA 
model also consists of another two orders: 
autoregressive order p and moving average order q. By 
the appropriate differencing order d obtained, we 
differenced the data of a particular ICP episode so that 
we can identify appropriate autoregressive order p and 
moving average order q from PACF and ACF of the 
differenced data.  

The process of selecting autoregressive orders (p, q) 
of the d-th order differenced ICP data is depicted in 
Fig. 2. If the PACF of the d-th order differenced ICP 
data cuts off after lag p, and there is no significant lag 
in ACF of the d-th order differenced ICP data, the d-th 
order differenced ICP data can be modelled as a p-th 
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order autoregressive process. If the ACF of the d-th 
order differenced ICP data cuts off after lag q, and 
there is no significant lag in PACF of the d-th order 
differenced ICP data, the d-th order differenced ICP 
data can be modelled as a q-th order moving average 
process. As shown in Fig. 3, if the PACF of the d-th 
order differenced ICP data becomes very small in 
absolute value after lag p, and the ACF of the d-th 
order differenced ICP data becomes very small in 
absolute value after lag q, the d-th order differenced 
ICP data can be modelled as a (p, q)-th order 
autoregressive moving average process [6]. 
 

Input d-th order 
differenced ICP data

Calculate & Plot Autocorrelation Function 
and Partial Autocorrelation Function

Yes

No

Yes

Ouput p-th 
order 

autoregressiv
e model

Ouput (p, q)-th order Autoregressive 
moving average model 

Yes

No

No

PACF cuts off after lag p & 
No significant lag in ACF?

ACF cuts off after lag 
q & No significant lag 

in PACF?

Ouput q-th 
order moving 

average model

Identify other 
appropriate 

models
PACF cuts off after lag p & 
ACF cuts off after lag q?

 
 
Figure 2: Flow chart of autoregressive order p and 
moving average order q selection algorithm 
 

After finding appropriated orders (p, d, q) of 
ARIMA, we input the d-th order differenced ICP data 
into autoregressive moving average (p, q) sub-process. 
The output predicted was also d-th order differenced 
ICP, so we need to conduct d-th order integration to 
complete autoregressive integrated moving average (p, 
d, q) process in order to obtain the final ICP forecast 
data. 
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Figure 3: Selecting p and q by ACF and PACF 
 
3. Results and Discussion 
 

We simulated online ICP signal streaming from 
twenty-seven patients’ ICP records collected from 
NICUs of National Neuroscience Institute - Tan Tock 
Seng Hospital, Singapore between 2009 ~ 2010. 
Patients underwent multi-modality monitoring with 
continuous recording for at least forty eight 
consecutive hours were included in our study. The ICP 
was measured invasively using a fibre-optic 
intraparenchymal gauge (Codman and Shurtleff, 
Taynham, MA). All the continuously monitored 
neurophysiological readings were sampled and 
recorded for every ten seconds on a Philips IntelliVue 
system. All medical records were anonymized and the 
study received ethics approval from the Institutional 
Review Board.  

The raw ICP monitoring data collected from NICUs 
were usually contaminated by a considerable amount 
of artifacts. These artifacts indicate rapid and dramatic 
ICP oscillations, which are advised by neuroclinicians 
to be physiologically impossible. These artifacts not 
only trigger false alerts in neuromonitoring systems but 
also severely affect the accuracy of short-term ICP 
forecast. We detected all the artifact episodes by 
empirical mode decomposition method, because it does 
not affect the original characteristics of ICP signal [9]. 
We imputed the ICP values of artifact episodes by 
median filter. The patients’ ICP records may also 
contain missing values, because of probe displacement, 
patient movement, neurosurgical intervention or 
human errors. We cleaned the ICP data by discarding 
the missing values.  

After artifact removal and missing data cleaning, we 
forecasted the future thirty-minutes ICP mean. The 
performance accuracy is measured by coefficient of 
determination (R-squared (R2)) and relative absolute 
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error (RAE). The R2 (R2=1-SSerr/SStot) is defined to be 
one minus the ratio between the sum of squares of 
residuals and the total sum of squares. The RAE  

(
1 1

/
n n

i i i
i i

RAE P T T T
= =

= − −∑ ∑ ) is defined to be 

the ratio between the sum of the absolute values of 
residuals and the sum of the absolute values of the 
difference between each target value and the mean of 
all target values.  Both R2 and RAE measure how well 
the forecast model can predict the future outcomes.  

We then compared the ICP forecast accuracy of 
ARIMA model with orders selection predicated on 
PACF and ACF and that of ARIMA model with orders 
selection predicated on Akaike information criterion 
(AIC) [7]. The results were summarized in Table 1.The 
mean and the standard deviation (Std) of the R-squared 
(R2) of the ARIMA model with orders selection based 
on PACF and ACF are 0.898 and 0.082, respectively. 
In comparison, the mean and the standard deviation of 
the R2 of the ARIMA model with orders selection 
predicated on AIC are 0.712 and 0.244, respectively. 
Results of Wilcoxon matched pairs signed ranks test 
show that, the ICP forecast accuracy of ARIMA model 
with orders selection predicated on PACF and ACF is 
significantly superior to that of ARIMA model with 
orders selection predicated on AIC, at the 0.05 p-value 
level. 

We also compared the performance of ARIMA 
approaches with exogenous input artificial neural 
network artifical neural network (ANN) approach [4]. 
As shown in Table 1, ARIMA based on AIC is inferior 
to ANN in accuracy by 11.4% ((0.712-0.804)/0.804). 
The accuracy of ARIMA based on PACF and ACF  is 
higher than that of ANN by 11.7% ((0.898-
0.804)/0.804).  

 
Table 1: Forecast Performance comparison between 
ARIMA on PACF and ACF and ARIMA on AIC 
(comparison with other methods) 
 
Method R2 

Mean 
R2 Std RAE 

Mean 
RAE 
Std 

 
t (sec) 

ARIMA 
PACF 
and ACF 

0.898 0.082 0.254 0.109 0.002 

ARIMA 
on AIC 

0.712 0.244 0.394 0.167 1.723 

ANN 0.804 0.170 0.352 0.124 0.667 
 

Another important performance index for online 
forecast is the average processing time per each 
forecast t. As shown in Table 1, the average processing 
time of ARIMA model predicated on PACF and ACF 

is 0.002 sec, which is much faster than ANN and 
ARIMA on AIC. 
 
4. Conclusions 
 

Forecasting continuous ICP trends for patients with 
traumatic brain injury can greatly facilitate doctors to 
make timely treatments in order to save those patients 
from death. Motivated by urgent need and significant 
impact, we presented an ICP forecast application of the 
ARIMA model with orders selection on the basis of 
ACF and PACF. Forecast experiment results showed 
that the ICP forecast accuracy of ARIMA improved 
significantly with orders selection predicated on ACF 
and PACF, compared with ARIMA based on AIC and 
ANN. Besides, the average forecast processing time of 
ARIMA model predicated on PACF and ACF is much 
shorter than that of ARIMA predicated on AIC and 
that of ANN. 
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