
  

 

Abstract— Spike detection is a prerequisite to analyzing 

neuronal activity. While simple spike detectors are favorable for 

hardware implementation, manual setting of spike detection 

threshold can be tedious and time-consuming, especially for 

extracellular recordings of multiple neuronal activity. This 

paper, therefore, investigates and proposes an automatic 

threshold selection using smoothed Teager energy histogram 

(STEH), with consideration of signal prewhitening, histogram 

bin width, and histogram equalization. Results from spikes with 

signal-to-noise ratio = 0.9-2.6 dB reveals that (1) prewhitening 

of neural signals can enhance true detection rate (TDR) by 10-

20% at constant false alarm (FA) ranging 3-12 spikes/s; (2) 

Freedman-Diaconis choice of STEH bin width delivers higher 

TDR (1.52 ± 1.41%) and FA (0.48 ± 0.25 spikes/s) than square-

root choice; and (3) histogram equalization can raise average 

TDR by 2.84% and FA by 1.01 spikes/s. Thresholds determined 

by STEH with signal prewhitening, Freedman-Diaconis choice 

or square-root choice of bin width, and histogram equalization 

fall around knee point of receiver operating characteristic 

curve, yielding average TDR = 87.88% and FA = 1.82 spikes/s 

for Freedman-Diaconis choice, and TDR = 86.49% and FA = 

1.41 spikes/s for square-root choice of STEH bin width.           

I. INTRODUCTION 

In an effort to develop high-performance brain-computer 
interfaces and neuroprosthetic devices, extracellular 
recordings of neuronal activity have been extensively used in 
neuroscience research to understand how the brain processes 
information [1]. Spike detection, the process of identifying 
neuronal action potentials (spikes) immersed in background 
noise, is a prerequisite to analyzing and interpreting the 
recorded neural signals [2,3]. Furthermore, as the process 
outputs only a sparse collection of spike waveforms, it 
reduces transmission data rate per channel and increases 
number of channels in a wireless multichannel extracellular 
recording system [4,5]. 

Spike detection comprises of two main steps. First, it 
preprocesses neural signals to remove unwanted noise and 
intensify spikes relative to background noise. Second, it 
applies a detection threshold to extract spikes from the 
preprocessed signals. During the days with no digital 
computers, spikes were detected through a simple voltage 
trigger with a voltage threshold set by the user. When a 
voltage signal crossed the threshold, a pulse would be 
generated to signify the presence of a spike, and the spike 
waveform would be extracted [2,3]. While the amplitude 
thresholding is simple and easy to implement, its 

 
*A.K. Ng, K.K. Ang, and C. Guan are with the Institute for Infocomm 

Research, Agency for Science, Technology and Research (A*STAR), 1 

Fusionopolis Way, #21-01 Connexis (South Tower), Singapore 138632, 

Singapore (e-mail: kang@i2r.a-star.edu.sg).  

performance deteriorates with decreasing signal-to-noise 
ratio (SNR) [4,5]. Energy thresholding is another technique 
for spike detection. It considers the instantaneous energy of 
neural signals by squaring the signal amplitude or by using 
the product of signal amplitude and frequency derived from 
nonlinear Teager energy operator (TEO) [6]. Other spike 
detectors driven by stationary wavelet transformation and 
template matching were also proposed, but they have high 
computational cost, similarity assumption between spike 
shapes and wavelet bases, or requirement of a priori 
information about spike shapes, which may not be suited for 
hardware implementation in a real environment [3‒5].  

Amplitude- and energy-driven spike detectors are usually 
preferred because they are computationally simple, easy to 
implement, and can deliver relatively good performance 
[4,5]. However, in situations involving extracellular 
recordings of activity across multiple neurons, manual 
setting of amplitude or energy threshold can be tedious and 
time-consuming as the threshold is determined through trial 
and error by the user. Moreover, being subjective in nature, 
the threshold can have large inter-observer variability, which 
may lead to poor reliability and consistency. Hence, an 
automatic threshold selection is more realistic and desirable.  

To optimize spike detection threshold selection, Rizk et 
al. [7] compared four noise estimators under different noise 
levels and suggested mean deviation operator as the most 
appropriate noise estimator. Conversely, Semmaoui et al. [8] 
proposed an adaptive threshold based on the relationship 
between low-order statistics of noise at a smoothed TEO 
(STEO) detector input and the mean and standard deviation 
of the detector output; the optimal multiplier value was 
found to lie between 5.5 and 7.5. Using the STEO detector, 
Malarvili et al. [9] chose the second bin value after the 
highest bin of smoothed Teager energy histogram (STEH) as 
the detection threshold, but they gave little explanation and 
information about the STEH. This paper further investigates 
the selection of spike detection threshold via STEH by 
considering (1) signal prewhitening, (2) histogram bin width, 
and (3) histogram equalization, which were not considered 
earlier, to the best of our knowledge. In doing so, we hope to 
provide more insight into STEH as an alternative means to 
autonomously select threshold for detecting spikes.       

This paper is structured as follows. In Section II, we 
describe the experimental dataset and the spike detection 
framework, with emphasize on STEH for threshold selection. 
Results for various spike detectors, with and without signal 
prewhitening and STEH, are presented in Section III and 
discussed with concluding remarks in Section IV. All 
analysis was performed using MATLAB (version 2011b) 
unless otherwise stated.    
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II. MATERIALS AND METHODS 

A. Dataset 

Two datasets, labeled as dataset 1 and dataset 2, were 
respectively obtained from OSort simulations 2 and 3 with 
noise standard deviation of 0.15, which are good 
representations of neural signals in a real environment [10]. 
The datasets, each 100 s at sampling frequency of 25 kHz, 
were generated from 150 well-separated spikes. Background 
noise was created by randomly choosing and scaling the 
spike waveforms before adding it to noise traces. Dataset 1 
has three neurons, each simulated by a renewal Poisson 
process with a refractory period of 3 ms and a mean firing 
rate of 5, 7, and 4 Hz, which correspond to an average SNR 
of 1.4, 1.4, and 2.3 dB. Dataset 2 has five neurons with mean 
firing rate of 5, 7, 4, 6, and 9 Hz, and corresponding average 
SNR of 1.4, 1.3, 0.9, 1.6, and 2.6 dB. There are 1568 and 
2986 ground truth spikes in datasets 1 and 2, respectively.    

B. Spike Detection 

During an extracellular recording, neural signals are 
often corrupted by two types of noises: neural noise induced 
by neuronal activity far from the recording electrode, as well 
as thermal and electrical noise from electronic circuitry in 
the recording system [11]. In this study, we attempted to 
suppress the neural noise, which is colored and correlated, 
through a 4th-order linear predictive coding prewhitening 
filter that can decorrelate the noise and whiten the signals 
[10]. The filter coefficients were computed from pure noise 
segment using autocorrelation method and Levinson-Durbin 
recursion [12]. Moreover, we bandpass filtered the signals 
through a 4th-order zero-phase lag Butterworth filter 
(300‒3000 Hz) to eliminate low-frequency local field 
potentials and high-frequency thermal and electrical noise.  

To further accentuate spikes, we pre-emphasized the 
filtered signals using four different techniques, as elaborated 
below, along with their respective threshold setting. 

1) Absolute value: A spike can have both positive and 

negative amplitudes, thus applying a threshold to the signal 

absolute value is equivalent to applying positive and 

negative thresholds. As suggested in [13], the threshold was 
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where M = 4 is the threshold multiplier, σ is the estimate of 

noise standard deviation, and xn is the signal at time n.    

2) Teager energy operator: A spike is described a short-

lived burst with high amplitude and frequency. TEO [6], 
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is sensitive to spikes because it can heighten local peaks in 
both amplitude and frequency. Since spikes are nonstationary 
phenomenon, the expectation operator of TEO cannot be 
substituted by a time-domain averaging but a frequency-
domain windowing, which gives rise to STEO [6], 
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where   denotes the convolution operator, and wn denotes 

the Hamming window of length = 5 [8]. The threshold,  

  




N

n

n
x

N
MThr

1

S

1
 , (4) 

was a scaled version of the mean STEO [8], with N data 

samples and threshold multiplier M = 8 [5]. 

3) Higher-order differential energy operator: The 

concept of instantaneous energy can be broadened to higher 

dimensions by measuring the cross energy between the signal 

and its higher derivatives [14]. The 3rd- and 4th-order 

differential energy operators, which correspond to an energy 

velocity operator [14],  
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and an energy acceleration operator [14],  
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were assessed, for the first time as energy-driven spike 

detectors. Similar to the TEO, which is a special case of 2nd-

order differential energy operator, the thresholds for energy 

velocity and energy acceleration operators were scaled 

version of the mean of their respective operator.  

To realize a dynamic threshold setting, we exploited 

STEH because STEO detector outperforms other amplitude- 

and energy-driven spike detectors, as rendered in Figure 1. 

For better understanding of STEH, we examined two choices 

of computing STEH bin width, namely Freedman-Diaconis 

choice [15], 
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which depends on the interquartile range of STEO and 

produces number of bins, 
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as well as the common square-root choice whose number of 

bins is the square-root of N data samples, b = sqrt (N).  

In addition, we incorporated histogram equalization [16] 
to augment the separability between spike and noise 
distributions, similar to enhancing image contrast. The 
equalized STEH at bin index k is 
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where cdf is the cumulative distribution function of STEH.  

Eventually, an adaptive threshold ThrSTEH for spike 
detection can be automatically determined by the cutoff 
value T that maximizes the entropies between spike HS and 
noise HN distributions.  
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analogous to thresholding gray-level image via histogram-
based entropy [17]. 
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Figure 1. Receiver operating characteristic curves of four spike 

detectors without signal prewhitening: absolute value (dash-dot line), 

energy velocity operator (dash line), energy acceleration operator (dot 

line), and STEO (grey solid line); and a STEO detector with signal 

prewhitening (black solid line). Asterisks indicate performance of 

STEO with threshold multiplier M = 8, while circles and squares 

respectively indicate STEH with and without histogram equalization. 

Shaded markers represent Freedman-Diaconis choice of bin width, 

while unshaded markers represent square-root choice of bin width.  
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Figure 2. True detection rate (%) versus threshold multiplier for 

STEO detector without (grey solid line) and with (black solid line) 

signal prewhitening. Asterisks indicate performance of STEO with 

threshold multiplier M = 8, while circles and squares respectively 

indicate STEH with and without histogram equalization. Shaded 

markers represent Freedman-Diaconis choice of bin width, while 

unshaded markers represent square-root choice of bin width.  

For each detected spike, 64 data samples (2.56 ms) were 
extracted, with the peak at sample 20. To lessen the effects 
of sampling jitter and improve spike alignment, we first 
interpolated the data samples four times using fast Fourier 
transform method, then re-aligned such that the peak was at 
sample 93, and finally downsampled to retain the original 
spike with sampling frequency of 25 kHz. 

C. Performance Measures 

Receiver operating characteristic (ROC) curves [18] were 
constructed to appraise the performance of spike detectors, 
with and without signal prewhitening and STEH. The ROC 
curve displays true detection rate (TDR, percentage of 
correctly detected spikes) on the vertical axis and false alarm 
(FA, number of falsely detected spikes per second) on the 
horizontal axis. A spike was deemed correctly detected if the 
time difference between the spike and the ground truth was 
within ± 0.4 ms, and there was no double counting.     

III. RESULTS 

Using the datasets 1 and 2 without signal prewhitening, 
Figure 1 demonstrates that STEO detector is superior to 
absolute value detector and comparable to energy velocity 
and energy acceleration operators, which implies STEO as a 
simple and efficient spike detector. Signal prewhitening can 
substantially improve detection outcomes. As illustrated by 
STEO detector in Figure 1, at constant FA ranging 3‒12 
spikes/s, there is 10‒20% TDR difference between STEO 
detector with and without signal prewhitening.  

Figure 1 and Table I present the detection performance of 
using STEH to select spike detection threshold. Comparing 
the two choices of computing STEH bin width for both 
datasets with and without signal prewhitening, we noticed 
that Freedman-Diaconis choice consistently attains higher 
TDR (mean ± standard deviation of 1.52 ± 1.41%) and FA 
(0.48 ± 0.25 spikes/s) than square-root choice. Besides that, 

histogram equalization can raise TDR by 2.84 ± 2.47% and 
FA by 1.01 ± 0.34 spikes/s. For STEO detector with signal 
prewhitening, thresholds determined by STEH with 
histogram equalization lie around knee point of its ROC 
curve. Under such condition, STEH with Freedman-Diaconis 
choice yields TDR = 87.88 ± 0.10% and FA = 1.82 ± 0.55 
spikes/s, whereas STEH with square-root choice yields TDR 
= 86.49 ± 0.07% and FA = 1.41 ± 0.36 spikes/s, as detailed 
in Table I. 

To further evaluate the competency of automated 
threshold selection using STEH, we compared its 
performance and corresponding threshold multiplier value 
with that of manual selection (M = 8 for STEO detector). 
STEH with signal prewhitening, Freedman-Diaconis choice 
or square-root choice of bin width, and histogram 
equalization achieve relatively lower TDR and FA for 
dataset 1 but higher TDR and FA for dataset 2. These 
findings are due to different threshold values determined by 
STEH, which are equivalent to M = 8.3‒8.6 for dataset 1 and 
M = 6.9‒7.3 for dataset 2 in (4), as rendered in Figure 2.     

IV. DISCUSSION 

This paper investigates and proposes the use of STEH to 
automatically select spike detection threshold. Results from 
stimulated datasets containing spikes of SNR = 0.9‒2.6 dB 
reveal that (1) prewhitening of neural signals can enhance 
TDR by 10‒20% at constant FA spanning 3‒12 spikes/s; (2) 
Freedman-Diaconis choice of STEH bin width yields higher 
TDR (1.52 ± 1.41%) and FA (0.48 ± 0.25 spikes/s) than 
square-root choice; and (3) histogram equalization can 
increase TDR by 2.84 ± 2.47% and FA by 1.01 ± 0.34 
spikes/s. Thresholds determined via STEH with signal 
prewhitening, Freedman-Diaconis choice or square-root 
choice, and histogram equalization are around knee point of 
ROC curve.  

Neural signals are often contaminated by two types of 
noises during an extracellular recording. Among these 
noises, neural noise is relatively difficult to handle because it 
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TABLE I.  DETECTION PERFORMANCE OF THRESHOLD SELECTION VIA SMOOTHED TEAGER ENERGY HISTOGRAM UNDER DIFFERENT CONDITIONS 

  Signal Prewhitening w/o Signal Prewhitening 

   Square-Root Freedman-Diaconis  Square-Root Freedman-Diaconis 

  HE w/o HE HE w/o HE HE w/o HE HE w/o HE 

Dataset 1 
TDR (%) 86.54 78.38 87.95 83.04 70.03 68.62 70.34 68.81 

FA (spikes/s) 1.15 0.19 1.43 0.46 5.22 4.08 5.77 4.20 

Dataset 2 
TDR (%) 86.44 84.86 87.81 86.57 76.19 73.68 76.89 75.52 

FA (spikes/s) 1.66 1.02 2.21 1.70 5.72 4.38 6.22 5.26 

   TDR refers to true detection rate in percentage (%); FA, false alarm in number of spikes per second (spikes/s); HE, histogram equalization; w/o, without 
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Figure 3. A preprocessed real neural signal of smoothed Teager 

energy operator (STEO) detector with signal prewhitening, and 

threshold values for threshold multiplier M = 8 (dot line) and for 

automated selection via smoothed Teager energy histogram with 

Freedman-Diaconis choice of bin width and histogram equalization 

(solid line). 

is colored and correlated [11]. In this study, we adopted a 
linear predictive coding prewhitening filter to decorrelate or 
pose statistical independence between noise, enhancing 
neural signal quality and improving spike detection 
performance. We also pre-emphasized the filtered neural 
signals using four different amplitude- and energy-based 
techniques and noted that STEO can best accentuate spikes 
relative to background noise, which is attributable to its 
nonlinear energy-tracking ability using both signal amplitude 
and frequency information [6]. Consequently, STEO detector 
delivers superior spike detection performance, which is in 
agreement with the literature [5,6]. 

Integrating STEH for autonomous selection of spike 
detection threshold can further boost the usefulness of STEO 
detector in a real environment. Thresholds determined by 
STEH, with histogram equalization that maximizes 
separation between spike and noise distributions, fall around 
knee point of the ROC curve of STEO detector with signal 
prewhitening. STEH bin width estimated by Freedman-
Diaconis choice produces higher TDR and FA than square-
root choice because the former choice leads to smaller bin 
width and more bins, thereby offering more details about the 
spike and noise distributions for the subsequent histogram 
equalization and histogram-based entropy thresholding.  

Owing to the fact that false alarms will be discarded 
during spike sorting, we propose using STEH with 
Freedman-Diaconis choice of bin width (TDR = 87.88 ± 
0.10% and FA = 1.82 ± 0.55 spikes/s), in addition to signal 
prewhitening and histogram equalization, for selecting spike 
detection threshold because its resultant threshold is more 
permissive, yielding more true detections with limited false 
alarms. While this study has demonstrated the feasibility of 
utilizing STEH to automatically select spike detection 
threshold, the results are based on stimulated datasets. 
Therefore, we are currently working on real datasets, and 

Figure 3 exemplifies a neural signal acquired from a 
monkey, in collaboration with Singapore Institute for 
Clinical Sciences and National University of Singapore. 
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