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Abstract— Non-stationarity of electroencephalograph (EEG) 
data from session-to-session transfer is one of the challenges for 
EEG-based brain-computer interface systems, which can 
inversely affect their performance. Among methods proposed 
to address non-stationarity, adaptation is a promising method. 
In this study, an adaptive extreme learning machine (AELM) is 
proposed to update the initial classifier from the calibration 
session by using chunks of EEG data from the evaluation 
session whereby the common spatial pattern (CSP) algorithm is 
used to extract the most discriminative features. The 
effectiveness of the proposed algorithm is on motor imagery 
data collected from 12 healthy subjects during a calibration 
session and an evaluation session on a separate day. The results 
from the proposed AELM were compared with non-adaptive 
ELM and SVM classifiers. The results showed that AELM was 
significantly better (p=0.03). Moreover, the results also showed 
that accumulating the evaluation session data and useing them 
for adapting the classifier will significantly improve the 
performance (p=0.001). Hence, the proposed AELM is effective 
in addressing the non-stationarity of EEG signal for online BCI 
systems.   

I. INTRODUCTION 

EEG-based brain-computer interface is widely used for 
both therapeutic and non-therapeutic applications [1-3]. 
However, there are still some unsolved challenges which may 
adversely affect the performance of a BCI system. One of the 
most challenging problems of EEG-based BCI systems is the 
non-stationarity of EEG signal which may be occurred due to 
several factors such as [4]: 1) Intra subject variability which 
usually happens because of the changes in subjects’ state and 
mood over different sessions or even within a session; 2) 
Physiological artifacts which may be generated from the user 
itself  through eye blinking, muscle movement or respiratory; 
3) Instrumental artifacts which may happen due to the 
changes in electrodes positions or their impedance during 
recording.  

Non-stationarity of EEG signal makes the initial model 
based on the train data to become suboptimal for other 
sessions. Shenoy et al. in [5] showed that there is a statistical 
difference between the train and online evaluation session. 
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They interpreted these changes as a shift of data in feature 
space. Therefore, applying methods which aimed to reduce 
such differences between train and evaluation data are useful. 
Several studies proposed methods to address non-stationarity 
of the EEG signal so far [6-11]. General speaking, adaptation 
is the most commonly used method to address non-
stationarity. Online adaptation can be used not only to adapt 
the features and the classifier between different sessions but 
also throughout a single session. With respect to adaptive 
learning for EEG signals we can categorize the proposed 
solutions into two major groups.  

The first groups of proposed methods are those which 
update the feature space [6, 7, 9, 11-14]. The second groups 
are those methods which alternatively update the classifiers 
[5, 10, 15-17]. Adaptive classifiers are evolved to overcome 
the changes in data from one session to another session or 
even within a single session. Bias adaptation for LDA 
classifier was proposed in [5] and compared with other 
adaptive techniques. The results suggested that their proposed 
adaptive classifier can overcome the shift in distribution of 
the data. Adaptive LDA classifier was also applied for a fully 
online BCI system [10]. The initial LDA classifier was 
adaptively updated through adaptive estimation of the 
information matrix. The results showed an improvement in 
performance of the subjects from one session to another 
session. In [16] Kalman adaptive LDA and adaptive 
information matrix QDA was studied. They showed that both 
of these continuously adaptive classifiers outperform 
discontinuously adaptive ones. An unsupervised adaptation 
method of the LDA classifier was also proposed in [15]. It 
was shown that their proposed method was effective for 
online BCI system.  

Although many researches on adaptive classifiers still 
none of them is widely used in BCI application. Here, in this 
paper an extreme learning machine (ELM) is updated 
adaptively to address non-stationarity of EEG data from 
calibration session to evaluation session. ELM is an 
interesting technique which has faster learning speed and 
better generalization in comparison with traditional neural 
networks and SVM classifier [18, 19]. The performance of 
SVM and ELM was reported to be similar [19]. Incremental 
learning of ELM was previously studied in [20, 21]. They 
applied it for human action recognition and face recognition. 
The results showed that ELM was an effective tool for those 
applications.  

The rest of this paper is organized as follows: the 
experimental setup and the methodology are briefly 
explained in section II. The results are presented in section III 
and finally section IV concludes this paper.   
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II. MATERIAL AND METHOD 

A. Experimental setup 
In this work EEG data from the 12 healthy subjects were 

collected. Two of the subjects were left-handed, the rest 
were right-handed. The right (left) handed subjects were 
asked to perform right (left) hand motor imagery. All the 
subjects were asked for ethics and approval and consent.  

EEG signal were collected using the Nuamps EEG 
acquisition hardware (http://www.neuroscan.com) with 
unipolar Ag/AgCl electrodes channels, digitally sampled at 
250 Hz with a resolution of 22 bits for voltage ranges of H130 
mV. EEG recordings from all 27 channels are band pass 
filtered from 0.05 to 40 Hz by the acquisition hardware. Prior 
to the experiments, the subjects were instructed to minimize 
any physical movement and eye blinking throughout the EEG 
recording process. 

The EEG data from each subject were collected on two 
separate days, two non-feedback sessions on the first day 
and three non-feedback sessions on the second day of study. 
During these sessions, the subjects were instructed to 
perform kinaesthetic motor imagery of their chosen hand or 
rest right after a visual cues displayed on the computer 
screen in each trial.  

Each session comprised of 40 trials of motor imagery 
and 40 trials of background rest condition and lasted about 
16 minute. Each trial comprised a preparatory segment of 2s, 
the presentation of the visual cue for 4s, and a rest segment 
of at least 6s. Each trial lasted approximately 12 s, and a 
break period of at least 2 minutes was given after each 
session of EEG recording.  

B. Pre-processing 
The recorded EEG data from all 27 channels are band 

pass filtered between 8 to 30 Hz. The time segment of 0.5 to 
2.5 second after providing the cue is extracted and used for 
feature extraction. Common spatial pattern (CSP) [22] which 
was previously shown to be an effective method is used to 
spatially filtering the extracted EEG. To select the most 
discriminative features the first and last two spatial patterns 
are chosen. Hence, totally four features are selected to be 
applied to the classifier.   

C. Adaptive ELM 
Extreme learning machine proposed by Huang et al. [18] 

is a single-hidden layer feed forward neural network (SLFN). 
One of the main advantages of ELM comparing to SLFN is 
its training speed. Since the weights of the input layer are 
assigned randomly the learning is performed at an extremely 
fast speed. In fact, ELM converts a learning problem into a 
linear system whose output weights can be determined 
through inverse operation of hidden layer weight matrices. 
For ! given training samples (6! , 2!) where 6! ! '" and 2! !
'$, the output of a standard ELM with activation function 
+(6) and !! hidden nodes is calculated as follows: 

" ! %!+"5!6$ + '!# = 2$,       . = 1, … ,!%!
!(# #" $%&"

where (5! , '!) are randomly assigned weight and bias of the 
ith hidden node and %! is the output weight. Equation (1) can 

be compactly written as: !% = ). Therefore, the output 
weight is a solution of minimizing the error #!% . )#: 

" %! = !() = !)#!:)#" $'&"

where ! = !:! and !( is the Moore-Penrose pseudo-
inverse of the hidden-layer output matrix H. To derive the 
update rule for the output weight, a new chunk of data from 
evaluation session is used where the output of hidden layer 
is H1 and T1 is their corresponding label matrix. Having a 
new chunk of data the initial minimization error problem 

will be updated to !@!"!#D% . @
)"
)#D!, where H0 and T0 are the 

output of hidden layer and label matrix of the initial training 
data, respectively. Therefore, the new output weight is 
calculated based on least-square minimization as follows: 

""""" %!(#) = !#
)# @!"!#D

:
@)")#D#" $(&"

""""" !# = @!"!#D
:
@!"!#D = !" + !#:!##" $)&"

where !" = !":!". Equation (3) is expanded: %!(#) =
!#
)#(!"!"

)#!":)" + !#:)# = !#
)#"!"%!(") + !#:)##.  

Substituting !" from (4), we have:  

""""" %!(#) = %!(")+!#
)#!#:")# . !#%!(")##" $*&"

The matrix inversion lemma states that for a given 
matrix * = (+ + %-&), its inverse is determined by:  

*)# =  +)# . +)#%(-)# + &+)#%))#&+)##""

We use this lemma to get the inverse of !# defined in (4). 
Finally, the recursive formulation for updating the output 
weights can be defined as follows: 

""""" %!(,-#) = %!(,)+!E-#
)# !E-#: ")E-# . !E-#%!(,)##" $+&"

""""" !E-# = !E + !E-#: !E-#." $,&"

"""""!E-#
)# = !E

)# .!E
)#!E-#: [" +!E-#!E

)#!E-#: ]!E-#!E
)##"$-&"

Adaptive ELM algorithm has two steps: initialization and 
adaptation. During first step or initialization the EEG data 
recorded during calibration session is used. The data of the 
evaluation session is used during second step or adaptation. 
In the following these two steps are briefly explained: 

Step I: Initialization 

N Assign the weights and bias of the hidden nodes: 
(5! , '!) in (1).  

N Compute the output matrix H of the hidden layer. 

N Calculate initial output weight according to (2). 

Step II: Adaptation 

N Select a chunk of EEG data from the evaluation 
session. 

N Estimate the labels of the trials in the selected chunk 
based on the initial settings of the ELM. 

N Update the output weights according to (6-8). 
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N Repeat Step II until the labels of the evaluation data 
is estimated. 

In this study, the number of input nodes of the designed 
ELM is set to four, since four CSP features are selected. Due 
to several simulations, the activation function +(6) is 
selected to be sigmoid, and the number of hidden nodes is 
fixed at #! = 10. Finally, each chunk of EEG data is set to 
contain 10 trials.   

III. RESULTS 

Due to non-staionarity of EEG data from one session to 
another session, the distribution of the data in calibration 
session and evaluation session might be different. Adaptive 
ELM was used to overcome such differences. It was applied 
on the dataset collected from 12 healthy subjects which is 
briefly explained in section II.  

Fig. 1 shows the two dimensional feature spaces for 
Subject #3 and Subject #8 with low and high session-to-
session performance accuracy. As shown in calibration 
session of subject #3, the two classes are not well separable. 
However, this is not the only reason of low performance for 
this subject. As can be seen there is a shift in feature space 
from calibration session to evaluation session. This is 
possibly another reason of user’s low performance (60.42%). 
In fact, having such shifts in feature space makes the initial 
classifier to be suboptimal for the evaluation session. On the 
other hand, for Subject #8 we can hardly see such changes in 
feature space, so that as we expected he has high 
performance accuracy (91.67%). 

 
Figure 1.  Two dimensional feature space for Subject #3 and Subject #8 

with low and high accuracy, respectively. The first row shows feature space 
of calibration session and second row shows thatof the evaluation session. 

Motor imagery class is shown by blue (*) and rest class is shown by red (o). 

In this paper, we aimed to show that using AELM can 
address non-stationarity of EEG data from one session to 
another session. Table 1 summarizes the classification results 
of all 12 healthy subjects for two different conditions: with 
and without adaptation. As shown, different classification 
algorithm was applied. The first two columns are the 
accuracies of SVM and ELM classifiers when there is no 
adaptation. As shown, the average accuracy of the ELM over 
12 subjects is (66.1%) and the performance of the subjects 
varies from 49.58% to 91.67%. Comparing ELM with SVM 

results it can be inferred that SVM has slightly better 
performance. However, there is no significant difference 
($ > 0.05) between SVM and ELM results when there is no 
adaptation. This is consistent with the results reported in 
previous works [19].    

The last three columns in Table 1 are the results of 
AELM in three different cases: 1) Balanced data from both 
classes are selected to adapt the classifier; 2) Unbalanced data 
from evaluation session are used for classifier adaptation; and 
3) All selected chunk of data from evaluation session are 
accumulated. Applying AELM for all three cases improves 
the average accuracy comparing to ELM. However, the 
improvement is not statistically significant ($ > 0.05) when 
balanced data are selected from the test data. Selecting 
unbalanced data from test session for ELM adaptation 
significantly improves the average accuracy ($ = 0.03). This 
shows that in real online experiment, the adaptation can be 
done regardless of the label of the trials from evaluation 
session. To evaluate the effect of increasing the number of 
samples in adapting the classifier, the selected chunks of 
evaluation data were accumulated and used for adaptation. 
This increased the average accuracy to 71.81% which is 
significantly higher that both SVM ($ = 0.03) and ELM 
($ = 0.001) classifiers. This implies that using more data 
from evaluation session is helpful to overcome the 
differences between two sessions.  

As stated in previous section the number of hidden nodes 
was fixed at  #! = 10. To evaluate the effect of this value on 
the performance we perform a comparative study with 
different number of hidden nodes.  Fig. 2 shows how 
arbitrary selection of #! may affect the overall performance. 
As shown, changing the number of hidden nodes does not 
have a great impact on average accuracy.   

IV. CONCLUSION 
This work aimed to propose a method for improving the 

session-to-session transfer performance of motor imagery-
based BCI system. Due to the non-stationarity of EEG signal 
in session-to- session transfer there is a drop in performance 

TABLE I.  ACCURACIES OF SESSION-TO-SESSION TRANSFER FOR THE 
12 HEALTHY SUBJECTS IN TWO DIFFERENT CONDITIONS: 1) WITHOUT 

ADAPTATION: SVM AND ELM ARE CHOSEN AS BASELINE CLASSIFIERS, 2) 
WITH ADAPTATION: ADAPTIVE ELM IS APPLIED WHEN TRIALS FROM THE 

EVALUATION SESSION ARE SELECTED BALANCED, UNBALANCED OR 
ACCUMULATED.  

 Accuracy of session-to-session transfer (%) 

Subjects 
Without 

adaptation With adaptation 

SVM ELM Balanced 
trials 

Unbalanced 
trials 

Accumulate 
data 

1 53.75 62.50 64.58 66.25 68.33 
2 52.50 49.58 52.08 48.33 59.17 
3 63.33 60.42 59.17 59.58 62.92 
4 71.25 71.67 78.33 77.50 80.00 
5 70.00 51.25 63.33 61.67 69.58 
6 75.83 69.17 67.50 68.75 72.08 
7 77.08 76.67 77.92 80.42 79.17 
8 92.92 91.67 94.17 94.58 97.08 
9 77.08 70.00 71.67 72.08 71.67 

10 57.50 61.67 59.17 59.17 63.33 
11 47.08 50.00 50.83 55.00 56.25 
12 72.92 78.75 79.58 80.00 82.08 

AVG 67.6 66.11 68.19 68.61 71.81 
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Figure 2.  Studying the effect of different number of hidden nodes on ELM 
accuracy. Each dot represents the average accuracy of ELM over 12 healthy 

subjects. 

of the users, adaptive extreme learning machine (AELM) 
was applied to compensate such deterioration.  

AELM used limited number of data from the evaluation 
session (i.e., at least one chunk of EEG data) to adaptively 
update the initial classifier. The results showed that AELM 
has significantly better performance in comparison with 
baseline classifiers (ELM and SVM).  

The results also suggested that accumulating data from 
evaluation session and using them for adapting the classifier 
will significantly improve the performance of the users. In 
contrast to most adaptive methods based on updating the 
features, AELM does not need balanced data for adaptation. 
In fact, there is no significant difference in performance of 
the users when balanced or unbalanced data from the 
evaluation session are selected for updating the classifier. 

In conclusion, ELM can be considered as one of the 
appropriate solutions for online BCI systems due to its fast 
learning process and acceptable performance.   
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