
  

 

Abstract—In EEG-based motor imagery Brain-Computer 

interface (BCI), EEG data collected in the calibration phase is 

used as a subject-specific model to classify the EEG data in the 

evaluation phase. Previous study has shown the feasibility of 

calibrating EEG-based BCI from passive movement. This 

paper investigates the primary sensorimotor area activation 

from fNIRS on 4 subjects using multimodal NIRS and EEG-

based BCI system while performing motor imagery and passive 

movement of the hand by a Haptic Knob robot. NIRS_SPM is 

used to compute the changes in hemoglobin response and to 

generate brain activation map based on the contrasts of motor 

imagery versus idle and passive movement versus idle. The 

results on the contrasts showed that passive movement versus 

idle yielded significant differences compared to motor imagery 

versus idle. In addition, the results of classifying the NIRS and 

EEG data separately also showed that the accuracies on 

classifying passive movement versus idle are better than that of 

motor imagery versus idle. The results suggest a potential of 

using passive movement data to calibrate motor imagery in a 

multimodal NIRS and EEG-based BCI.  

I. INTRODUCTION 

A brain computer interface (BCI) allows direct 
communication and control of external devices using brain 
signals [1]. The brain signals can be acquired by 
electroencephalogram (EEG), near infrared spectroscopy 
(NIRS) and other modalities like functional magnetic 
resonance imaging (fMRI), magnetoencephalography 
(MEG), positron emission tomography (PET) from a subject. 
EEG is widely used because of its good temporal resolution, 
easy portability and low cost of setup [2].  EEG-based motor 
imagery BCI is a promising technology which translates the 
imagination of movements into commands and has the 
prospects for neurological rehabilitation [3]. Generally the 
motor imagery BCI works in two phases, the calibration 
phase and the evaluation or feedback phase[4]. In the 
calibration phase, EEG data acquired from a subject while 
performing motor imagery is used to train a subject-specific 
model. In the evaluation phase, the subject-specific model is 
used to classify the EEG data and translate the output into 
control signals.  

Since higher model accuracy provides a more refined 
control for a BCI system, many studies have attempted to 
propose effective methods to improve the accuracy level.  
Study [5] proposed a parse common spatial pattern algorithm 
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for EEG channel selection to yield the best classification 
accuracy s. Study [6] came up with  a Filter Bank Feature 
Combination (FBFC) approach using Common Spatial 
Pattern (CS) and Phase Lock Value (PLV), yielding a 
significant improvement in cross-validation accuracies. 
Study[7] presented an integrative clustering and support 
vector-based active learning method to increase the 
classification accuracy of motor imagery EEG signal. Study 
[8] investigated the feasibility of calibrating EEG-based 
motor imagery BCI from passive movement. This study 
showed that the calibration performed using passive 
movement yielded higher model accuracy than the calibration 
performed using motor imagery with no significant 
differences.  

NIRS-based BCI is an emergent technology. As a non-
invasive optical functional brain imaging technique, fNIRS 
measures the concentration changes of oxygenated 
hemoglobins (HbO) and deoxygenated hemoglobins (HbR) 
in the superficial layers of the human cortex by means of 
distinct absorption spectra in the near-infrared range [9] . 
fNIRS is safe, portable and has high spatial resolution. This 
high spatial resolution property makes NIRS as a suitable 
technology to determine the motor imagery of hand as 
imagery of the hand movement is represented as a localized 
activation in the primary sensorimotor area.  The feasibility 
of using NIRS-based motor imagery BCI has been 
demonstrated in studies. Study [10] tried to detect motor 
imagery with online feedback in a NIRS-base motor imagery 
BCI system. Study [11] introduced a multimodal NIRS and 
EEG-based system and used NIRS as a predictor for EEG-
based BCI performance. To the best of our knowledge, there 
is no result of multimodal BCI study focusing on passive 
movement in previous literatures. 

Motivated by the study in [8], this paper investigates the 
motor area activations from subjects performing motor 
imagery and passive movement using a multimodal NIRS 
and EEG-based BCI system. Simultaneous recordings of 
NIRS and EEG are collected from 4 healthy subjects 
performing motor imagery or passive movement. NIRS_SPM 
[12] is used to generate the brain activation map based on the 
two contrasts defined as motor imagery (MI) versus idle (MI 
vs Idle) and passive movement (PM) versus idle (PM vs 
Idle). In addition, this study classifies the NIRS and EEG 
data separately using the method in study [13] and study [8] 
respectively.  

The remainder of this paper is organized as follows: 
Section II describes the subjects, the simultaneous NIRS and 
EEG data collection, experimental protocol and data 
processing and analysis. Section III presents the experimental 
results. Section IV concludes the paper.  
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II. SUBJECTS AND METHOD 

A. Subjects 

4 healthy subjects from staffs and students from the 
Brain-Computer Interface laboratory in the Institute for 
Infocomm Research, A*STAR participated in this study.  
Ethics approval was obtained. All subjects were fully 
informed, and signed the consent form. All subjects were 
asked to use their right hand in the experiment.  

B. Data acquisition 

In this study, NIRS and EEG data were collected 
simultaneously. The continuous wave NIRS instrument NIRx 
DYnamic Near-Infrared Optical Tomography (DYNOT) 
Imaging System (NIRx Medical Technologies, LLC.) 
recorded fNIRS data using two wavelengths (λ = 760 & 830 
nm) with a sampling rate of 1.81 Hz, with 64 optical fibers 
(32 sources and 32 detectors respectively). EEG data were 
recorded with a multichannel EEG amplifier (ANT by ANT 
Neuro, a Dutch corporation) equipped with 32 Ag/AGCl 
electrodes plus GND, 4 bipolar - EMG, EOG, EKG and 4 
auxiliary input for GSR, nasal flow, pH sensor, temperature; 
sampling rate at 256.  

WaveGuard EEG Cap, product of eemagine Medical 
Imaging Solutions GmbH, Berlin, Germany, was used for 
this study. NIRS optobes holders and EEG electrodes were 
integrated in a standard EEG cap (international 10-20 
system). As the trajectory of the photon path from source to 
detector is assumed to be a ‘banana’ shape between the two 
optobes [14], the signal quality of two source/detector pairs is 
good only when the path length is within an effective range. 
Due to the constraint of space and size of the NIRS optobes 
holder, not all the distances of NIRS pairs of source and 
detector crossing over each EEG electrodes are within the 
effective distance. To get more effective channels, the NIRS 
optobes layout arrangement is to put as many optobes as 
possible to be around the EEG electrodes near the motor area 
of the subject’s head as shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Optobes layout arrangement. The blue dots represtent EEG 

electodes, while red and green dots represent the NIRS optobes sources and 
dectors respectively.  

 

 

 

 

 

 

 

 

 

 

Figure 2.  The multi-modal NIRS+EEG experiment setup for subject 

performing motor imagery and passive movement using the haptic knob. 

The NIRS setup measured 32 channels from 32 detectors 
for each source, which yielded a total of 1024 channels for 
each wavelength. The actual optobes locations were detected 
using the Xensor digitizer digitizer (A 3D electrode digitizer 
system used to capture the optobe locations that runs the 
optobes digitization procedure and records, visualizes and 
stores the digitized optobe positions). Only those channels 
with source and detector distances falling in 2.5cm to 4.0cm 
range were selected in this study. As a result, a total of 62 
channels were used for each wavelength.  

C. Experimental Protocol 

The subjects sat in a room with normal lighting on a 
comfortable chair with armrests. They faced a computer 
screen on which task cues were displayed and held the haptic 
knob with their right hand.. They were asked to relax before 
the data collection and during resting state. They were also 
asked to minimize physical movement,  mouth  movement 
and eye blinking through data collection process.  

Due to the NIRS signal latency effect to hemodynamic 
response, where the peak response occurs approximately 5-8s 
post stimulus[15], the experimental protocol was designed to 
have a longer rest period(10s) after every action to make sure 
the signal of performing motor imagery and passive 
movement contains the peak values of hemodynamic changes 
were recorded. This is different from a typical EEG-based 
BCI experimental protocol design. Figure 3 shows the 
experimental protocol design of this study.  

 

 

 

 

 

 

Figure 3.  Experimental protocol design for multimadal NIRS and EEG-
based motor imagery BCI. Action is motor imagery or idle in motor 

imagery run  and  passive movement or idle in passive movement run.  

The experiment comprised of two runs, one for motor 
imagery and one for passive movement with 50 trials per run. 
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Actions are randomly selected as motor imagery or idle in 
motor imagery run, and passive movement or idle in passive 
movement run. Each trial started with a beep and a fixation 
cross as the visual cue was presented for 2s. Then a randomly 
generated action visual cue was presented for 5s. If a yellow 
arrow was presented, the subjects were asked to perform 
motor imagery of the right hand (open/close hand) in motor 
imagery run while passive movement of the right hand 
(open/close hand movement) was performed using the Haptic 
Knob robot in the passive movement run. If a yellow circle 
was presented, the subjects were asked to think blankly as the 
idle state. Followed by a dark blue status bar appeared for the 
rest period, and the subjects just relaxed.  

D. Data analysis 

NIRS-SPM [12] is an emerging software for NIRS data 
processing and analysis. It is a SPM and MATLAB-based 
software package for statistical analysis of NIRS signals. 
NIRS_SPM uses modified Beer-Lambert law [16] to 
compute the concentration changes of HbO and HbR from 
optical density changes. It helps map the spatial registration 
of NIRS channels to MNI space. In this study the locations of 
the optobes were measured using Xensor digitizer. After the 
spatial registration of NIRS channel locations, the spatial 
registration of NIRS channels to MINI space with MRI 
coordinate input is available for further analysis. Statistical 
analysis of NIRS data adopted a mass-univariate approach 
based on the general linear model (GLM) and Sun’s tube 
formula [12][17][18][19][20].  A high pass filter based on a 
discrete cosine transform (DCT) with a cutoff frequency of 
80 Hz [21] and low pass filter hrf were used. The brain 
activation maps of HbO and HbR with super-resolution 
activation location were generated based on two contrasts: 
motor imagery versus idle and passive movement versus idle, 
with p < 0.05. Fig. 4 demonstrates the spatial location of the 
selected NIRS channels.  

 

 

 

 

 

 

 

 

 

 

Figure 4.  NIRS_SPM generated the spatial location of the selected 

channels.  

This study investigated the classification accuracy on 
motor imagery versus idle and passive movement versus idle 
using the NIRS data as well. First, the data was normalized, 
and then low-pass filtered using Chebychev type II filter with 
a cut-off frequency of 0.14 Hz and pass-bank attenuation of 
0.02 dB. Afterwards, linear-detrending was performed.  The 
HbO and HbR were computed using Beer-Lambert Law [16]. 
The feature was effectively extracted using common average 

reference spatial filtering and single-trial baseline reference 
[13]. The discriminative features were selected using the 
Mutual Information-based Best Individual Feature (MIBIF) 
algorithm [22] and Support Vector Machine was used to 
classify the selected features. The performance was presented 
using 5x5-fold crossing-validation on the single-trial NIRS 
data.  

EEG data was classified using the exact method in 
previous study [8]. Data was calibrated using the Filter Bank 
Common Spatial Pattern algorithm and the performance was 
computed based on a 10x10-folder cross-validation of the 
calibration data.  

III. RESULTS 

Table I. shows the classification result on the EEG and 
NIRS data. The results showed that the average classification 
accuracies for passive movement versus idle are higher than 
for the motor imagery versus idle in both EEG data and NIRS 
data.  

TABLE I.  EXPERIMENTAL RESULTS ON THE CLASSFICATION OF NIRS 

AND EEG DATA. 

Subject 
EEG Data NIRS Data 

MI vs Idle PM vs Idle MI vs Idle PM vs Idle 

1 49.9 80 53.6 65.2 

2 73.9 92.8 54.2 64.8 

3 54.8 56.8 57.4 67.2 

4 60 59.9 45.8 43.6 

Mean 59.65 72.375 52.75 60.2 

 

Fig. 5 shows the motor area activations during motor 
imagery and passive movement with contrasts defined as 
motor imagery versus idle and passive movement versus idle 
of individual analysis. The left side shows the activation of 
HbO with the contrasts of motor imagery versus idle and the 
right side shows the contrasts of passive movement versus 
idle, with p < 0.05.  

 

 

 

 

 

 

 

 

Figure 5.  Individual motor area activations of HbO with contrasts of motor 

imagery versus idle and passive movement versus idle (from left to right), p 

< 0.05. 

The results show that passive movement induces obvious 
changes in brain activity in both the right and left motor area 
while motor imagery movement only induces less obvious 
changes in left motor area.  
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IV. DISCUSSION AND CONCLUSIONS 

This study investigated the primary sensorimotor area 
activation from fNIRS on 4 subjects using multimodal NIRS 
and EEG-based BCI system while performing motor imagery 
and passive movement of the hand througgh a Haptic Knob 
robot. The NIRS and EEG data were collected 
simultaneously.  The design of this study is based on the use 
of EEG-based motor imagery brain-computer interface for 
neurorehabilitation in stroke [23]. 

The results of the activations on the contrasts showed that 
passive movement versus idle yielded significant differences 
compared to motor imagery versus idle. For the activations 
on the contrasts of passive movement versus idle, 3 of 4 
subjects showed the activations on both right and left area.     
However, the reasons as to why passive movement induced 
obvious changes in brain activity in both the right and left 
motor area are worth further investigation to better 
understand the fundamental neural basis of the human brain. 
We will investigate this on more subjects.  

Apart from the motor area activation map, the results of 
the classification of the NIRS and EEG data also showed that 
the accuracies on classifying passive movement versus idle 
are better than that of motor imagery versus idle.  

The performance of motor imagery is internal to the 
subject and there is no direct way to observe this 
performance; on the other hand, the performance of passive 
movement is easy to observe directly. The results suggest a 
potential of using passive movement data to calibrate motor 
imagery in a multimodal NIRS and EEG-based BCI.  
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