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Abstract—Electroencephalogram (EEG) data from 
performing motor imagery are usually used to calibrate a 
subject-specific model in Motor Imagery Brain-Computer 
Interface (MI-BCI). However, the performance of MI is not 
directly observable by another person. Studies that attempted 
to address this issue in order to improve subjects with low MI 
performance had shown that it is feasible to use calibration 
data from Passive Movement (PM) to detect MI in healthy 
subjects. This study investigates the feasibility of using 
calibration data from PM of stroke patients to detect MI. EEG 
data from 2 calibration runs of MI and PM by a robotic haptic 
knob, and 1 evaluation run of MI were collected in one session 
of recording from 34 hemiparetic stroke patients recruited in 
the clinical study. In each run, 40 trials of MI or PM and 40 
trials of the background rest were collected. The off-line run-
to-run transfer kappa values from the calibration runs of MI, 
PM, and combined MI and PM, to the evaluation run of MI 
were then evaluated and compared. The results showed that 
calibration using PM (0.392) yielded significantly lower kappa 
value than the calibration using MI (0.457, p=4.40e-14). The 
results may be due to a significant disparity between the EEG 
data from PM and MI in stroke subjects. Nevertheless, the 
results showed that the calibration using both MI and PM 
(0.506) yielded significantly higher kappa value than the 
calibration using MI (0.457, p=9.54e-14). Hence, the results of 
this study suggest a promising direction to combine calibration 
data from PM and MI to improve MI detection on stroke. 

I. INTRODUCTION 

Motor Imagery Brain-Computer Interface (MI-BCI) is a 
emergent technology that translates the imagination of 
movements into commands [1], and has the prospects of 
restoring motor control in stroke [2]. MI-BCIs generally 
adopt the subject learning approach [3], the machine learning 
approach [4], or the co-adaptive approach using both subject 
and machine learning [5]. MI-BCIs that adopt the machine 
learning approach generally operates in two phases: the 
calibration phase, and the evaluation or feedback phase [6]. 
Electroencephalogram (EEG) data are usually collected from 
a subject in performing motor imagery to train a subject-
specific model in the calibration phase [7]. The subject-
specific model may include the subject-specific time 
segment, temporal filters, spatial filters computed using the 
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Common Spatial Pattern algorithm [8], and parameters of a 
classifier. This subject-specific model is then used to classify 
the EEG data from the subject in the evaluation phase and the 
classifier output is translated into control signals. 

However, when the subject is performing MI, the process 
is inherently internal to the subject and is not directly 
observable by another person. For example, the subject may 
have other thoughts instead of imagining the motor 
movement as instructed. Thus there is no direct measure to 
indicate that the subject is performing MI properly for 
calibration. An indirect measure is to evaluate the cross-
validation accuracy of the subject-specific model using the 
calibration data. This can be performed by using part of the 
EEG data to calibrate the model and classifying the 
remaining part using the calibrated model. 

Nevertheless, there are evidences that performing Active 
Movement (AM), Passive Movement (PM) [9], [10] and MI 
[11] of the hand yielded similar Event-Related 
Desynchronization/Synchronization (ERD/ERS) patterns [12] 
in the primary sensorimotor areas. Studies of EEG [13] and 
MEG [14] on performing AM and PM of the foot also 
showed similar findings. There are also studies that showed 
MI induced both ERD and ERS patterns in the mu rhythms 
[15] whereas PM induced ERS patterns in the beta rhythms 
[9], [10], [13]. 

Since AM or PM are directly observable compared to MI, 
existing studies had investigated the feasibility of calibrating 
EEG-based motor imagery BCI using AM or PM on healthy 
subjects. The study in [16] on 3 Laplacian channel EEG data 
collected from 19 elderly healthy subjects showed that the 
performance of MI of the hand did not differ significantly 
from calibration from AM or PM by a hand robot 
Tyromotion. Furthermore, the study in [17] on 27-channel 
EEG data from 12 healthy subjects showed that the 
performance of MI of the hand from the calibration using PM 
yielded slightly higher session-to-session transfer than the 
calibration using MI, but no significant differences were 
observed. 

Stroke often results in hemiparesis or hemiplegia that is 
contralateral to the affected side of the brain. Motor imagery 
is appealing to stroke patients because they can perform 
imagined movements or even attempt to move their plegic 
hand in the absence of any motor function. Although studies 
had shown that it is feasible to calibrate EEG-based MI-BCI 
from AM or PM on healthy subjects [16], [17], AM by stroke 
patients is often not possible. Hence one of the objectives in 
this clinical trial is to investigate the feasibility of using 
calibration data from PM of stroke patients to detect MI. 
Furthermore, since stroke patients suffer neurological 
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damage to their brain, the portion of their brain that is 
responsible for generating ERD/ERS can be compromised. 
This motivates the investigation on the performance of 
calibrating MI-BCI using PM of the hand from stroke 
patients to detect MI compared to calibrating data from MI of 
stroke patients. 

The remainder of this paper is organized as follows: 
Section II describes the experimental methodology for this 
study. Section III presents the experimental results. Finally, 
section VI concludes the paper. 

II. SUBJECTS AND METHODS 

A. Subjects 
As to-date, 34 BCI naïve hemiparetic subjects were 

recruited from stroke patients admitted to a 
neurorehabilitation facility linked to the local hospital with an 
acute stroke unit. Ethics approval and informed consent were 
obtained. Table I shows the demographic and clinical 
variables of these stroke subjects, which include type of 
stroke (ischaemic or hemorrhagic), side of stroke (right or 
left) from neuroimaging, nature of the stroke (cortical or 
subcortical), and baseline Fugl-Meyer Assessment (FMA). 

TABLE I 
DEMOGRAPHIC AND CLINICAL VARIABLES FOR STROKE SUBJECTS (N=34) 

Gender 
M/F 
(%) 

Handed-
ness 
R/L 
(%) 

 Stroke  

Mean age
(Range) 

CVA to 
screen days

(Range) 

Type 
I/H 
(%) 

Side 
R/L 
(%) 

Nature 
C/S 
(%) 

23 M 
(69.7) 

32 R 
(94.1) 

18 I 
(52.9) 

19 R 
(55.9) 

10 C 
(29.4) 

56.4 
r12.6 

(30-79) 

409.5 
r195.4 

(183-1106)
M INDICATES MALE; F, FEMALE; R, RIGHT; L, LEFT; N, NONE; I, 
INFARCTION; H, HAEMORRHAGIC; C, CORTICAL; S, SUBCORTICAL; CVA, 
CEREBROVASCULAR ACCIDENT 

B. EEG data collection 
EEG from 27 channels were collected using the Nuamps 

EEG acquisition hardware with unipolar Ag/AgCl electrodes 
channels, digitally sampled at 250 Hz. EEG recordings from 
all channels are bandpass filtered from 0.05 to 40 Hz by the 
acquisition hardware. The subjects were instructed to 
minimize physical movement and eye blinking throughout 
the EEG recording process. Two calibration runs and one 
evaluation run of EEG data were collected from one session 
on the same day. The first calibration run collected EEG from 
the subject while performing MI, the second calibration run 
collected EEG from the subject while performing PM. Fig. 1 
shows the experimental setup to collect EEG data whereby 
PM was performed by the haptic knob robot by opening and 
closing the subject’s hand. The third evaluation run collected 
EEG data from the subject while performing MI. 

The subjects were instructed to perform kinaesthetic 
motor imagery of the stroke-affected hand in the first MI 
calibration run. The instructions were presented in the form 
of visual cues displayed on the computer screen in each trial. 
The subjects were instructed to rest during the background 
rest condition. In the second PM calibration run, the subjects 
were instructed to relax while PM was performed using the 
haptic knob robot [18] to open and close the stroke-affected 
hand of the subject. In the third MI evaluation run, the 
subjects were instructed as per the first MI calibration run. 

 
Fig. 1. Experimental setup to collect EEG data from Motor Imagery (MI), 
Passive Movement (PM) of the right hand using the haptic knob robot for 
calibrating EEG-based MI-BCI 
 

Each run lasted about for approximately 16 minutes that 
comprised of 40 trials of either MI or PM, and 40 trials of 
background rest condition. Each trial comprised a preparatory 
segment of 2 s, the presentation of the visual cue for 4 s, and 
a rest segment of at least 6 s. Each trial lasted approximately 
12 s, and a break period of at least 2 minutes was given after 
each run. The EEG data from the first and second calibration 
runs were used to calibrate the subject-specific model from 
performing motor imagery, and the EEG data from the third 
run were used to evaluation the performance of the subject-
specific model. 

C. Evaluating the subject-specific model 
The Filter Bank Common Spatial Pattern (FBCSP) [19] 

algorithm was used to evaluate the performance of the 
subject-specific model. The FBCSP algorithm comprises 4 
progressive stages of EEG processing to construct the 
subject-specific model. The first stage employs a filter bank 
that decomposes the EEG into multiple frequency pass bands 
filters. The second stage performs CSP spatial filtering. Each 
pair of band-pass and spatial filter then computes the CSP 
features that are specific to the band-pass frequency range. 
The third stage selects discriminative CSP features based on 
the mutual information between the CSP features and the 
subject’s performed task to select 4 best features. Finally, the 
fourth stage employs the Fisher Linear Discriminant 
classification algorithm to model and classify the selected 
CSP features. The reader is referred to [19] for more details 
on the FBCSP algorithm. 

Two analyses was performed: first to evaluate on the 
cross-validation accuracies of the calibration data from MI 
and PM, and second to evaluate the off-line run-to-run 
transfer of the data from the calibration models to the data 
from the third evaluation run.  

For the first analysis, the EEG data from the first MI 
calibration run that comprised 40 trials of MI and 40 trials of 
background rest, and second PM calibration run that 
comprised 40 trials of PM and 40 trials of background rest 
condition were used to evaluate the subject-specific models 
calibrated. The EEG data were extracted 0.5 to 2.5 s after the 
visual cue was shown to the subject, and the performance of 
the subject-specific models for each subject was evaluated by 
performing single-trial classification of the EEG data using 
10×10-fold cross-validations with the FBCSP algorithm.
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Fig. 2. The maximum Kappa values of the off-line run-to-run transfers of the MI calibration run (denoted MIc-MIs), the PM calibration run (denoted PMc-
MIs), and combined MI and PM calibration runs (denoted MIPMc-MIs) from 34 stroke patients to the MI evaluation run. 
 

For the second analysis, the performance of calibrating 
MI-BCI was evaluated on the Kappa coefficient from the off-
line run-to-run transfer from the FBCSP algorithm using 
three calibration models to the MI evaluation run. The EEG 
data used to train the FBCSP algorithm were extracted 0.5 to 
2.5 s after the visual cue was shown to the subject in the 
calibration data. The 3 calibration models are: 

x MI calibration model – EEG data from the first 
calibration run that comprised 40 trials of MI and 40 
trials of background rest condition. 

x PM calibration model – EEG data from the second 
calibration run that comprised 40 trials of PM and 40 
trials of background rest condition. 

x MI and PM calibration model. – EEG data from the 
first and second calibration run that comprised of 40 
trials of MI, 40 trials of PM and 80 trials of 
background rest condition. 

The Kappa coefficient was used to evaluate the maximum 
Kappa value based on the entire timecourse of the single-trial 
EEG from the onset of the visual cue. It was computed using 
the bci4eval function of the BioSig Toolbox [20] from the 
results of the FBCSP algorithm after the presentation of the 
cue for every point in time across all the trials on the 
evaluation data. 

III. EXPERIMENTAL RESULTS 

The results of the 10u10-fold cross-validation accuracies 
from the first analysis on the calibration runs showed that the 
averaged accuracy of detecting PM from the background rest 
condition (74.0%) was significantly higher than the averaged 

accuracy of detecting MI from the background rest condition 
(72.6%, p=0.005) using paired sample t-test. This result is 
consistent with the results on healthy subjects presented in 
[17] where it was shown that the averaged accuracy of 
detecting PM of the chosen hand from the background rest 
condition from healthy subjects (73.6%) was higher than 
detecting MI (71.3%). However, the study on 12 healthy 
subjects in [17] did not reveal significant differences, which 
may be due to the smaller number subjects involved. 

The results of the maximum kappa value from the off-line 
run-to-run transfers of the calibration runs collected from MI, 
PM, and combined MI and PM to the EEG data collected 
from MI are shown in Fig. 2. The results showed that the 
calibration performed using PM yielded lower off-line run-
to-run transfer kappa value (0.392) than the calibration 
performed using MI (0.457, p=4.40e-14) using paired sample 
t-test. This result is in contrast with the results on healthy 
subjects presented in [17] where it was shown that calibration 
performed using PM yielded higher off-line run-to-run 
transfer kappa value (0.354) than the calibration performed 
using MI (0.311). However, the study on 12 healthy subjects 
in [17] did not reveal significant differences, which may be 
due to the smaller number of subjects involved again. The 
contrast in the results may also be due a significant disparity 
between the EEG data from PM and MI in stroke subjects. 
Although the performance of PM is relatively easier and 
directly observable compared to the performance of MI, the 
results of this study showed that it may not be that promising 
to first calibrate the subject-specific model using PM to 
detect the performance of MI in stroke. 

Nevertheless, the results showed that the calibration 
performed using both MI and PM yielded significantly higher 
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off-line run-to-run transfer kappa value (0.506) than the 
calibration performed using MI (0.457, p=9.54e-14). Hence, 
the results of this study suggest a very promising direction to 
combine calibration data from PM and MI to improve MI 
detection on stroke. 

IV. CONCLUSION 
This clinical trial investigates the feasibility of using 

calibration data on PM from stroke patients to detect MI. The 
study collected EEG data from 35 BCI naïve hemiparetic 
stroke patients in performing MI or PM of the stroke-affected 
hand and the background rest condition. The design of this 
clinical study is based on the use of EEG-based MI-BCI for 
neurorehabilitation in stroke [1]. 

Contrary to the findings presented in the previous study 
on healthy subjects [17], the results of this clinical trial 
showed that the calibration performed using PM yielded 
significantly lower off-line run-to-run transfer averaged 
kappa value than the calibration performed using MI. Thus 
the results showed that it may not be feasible to first calibrate 
the subject-specific model using PM to detect the 
performance of MI in stroke. The results may be due to a 
significant disparity between the EEG data from PM and MI 
in stroke subjects in contrast to healthy subjects, and this 
requires further analysis. 

Nevertheless, the results showed that the calibration 
performed using both MI and PM yielded significantly higher 
off-line run-to-run transfer kappa value than the calibration 
performed using MI. Since the performance of PM is easier 
and observable compared to MI, the results showed that it is 
feasible to combine calibration data from PM and MI to 
improve MI detection on stroke. 

However, one limitation of this study is that the results of 
using both the PM and MI calibration runs involved double 
the amount of training data compared to the results of using 
only the PM or MI calibration run. Thus the results may be 
due to an inherent increase in available training data and 
further analysis is required. Another limitation is that the 
results reported are dependent on the method of the EEG 
analysis used. Thus the results reported may be improved 
upon using more advanced methods such as Mutual 
information-based selection of optimal spatial-temporal 
patterns in [7]. Lastly, the study is very preliminary as it is 
limited to the run-to-run transfer from one session collected 
on the same day. Further analysis on the session-to-session 
transfer performance is required for a more conclusive study. 

As-to-date, the clinical trial is still ongoing. Stroke 
patients are first screened on their ability to use EEG-based 
MI-BCI similar to the clinical trial conducted in [1]. Patients 
who passed the screen are then asked to give consent to be 
recruited into three groups: BCI-based robotic rehabilitation 
using the haptic knob, robotic based rehabilitation using the 
haptic knob, and conventional therapy. The results on the 
functional improvements of these three groups will be 
analyzed and reported once the clinical trial is completed. 
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