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ABSTRACT

This paper addresses the key issue of discriminative fea-
ture extraction of electroencephalogram (EEG) signals in
brain-computer interfaces. Recent advances in neuroscience
indicate that multiple brain regions can be activated during
motor imagery. The signal propagation among the regions
can give rise to spurious effects in identifying event-related
desynchronization/synchronization for discriminative motor
imagery detection in conventional feature extraction meth-
ods. Particularly, we propose that computational models
which account for both signal propagation and volume con-
duction effects of the source neuronal activities can more
accurately describe EEG during the specific brain activities
and lead to more effective feature extraction. To this end, we
devise a unified model for joint learning of signal propagation
and spatial patterns. The preliminary results obtained with
real-world motor imagery EEG data sets confirm that the
new methodology can improve classification accuracy with
statistical significance.

Index Terms— Electroencephalograph, motor imagery,
spatial filter design, brain computer interface

1. INTRODUCTION

Motor imagery is a dynamic state that can induce the same
motor representation internally as the corresponding motor
execution [1], and studies have shown that distinct brain sig-
nals such as event-related desynchronization (ERD) or event-
related synchronization (ERS) are detectable from EEG dur-
ing motor imagery [2, 3]. Therefore, motor imagery based
brain-computer interface (BCI) has become a highly intensive
research area [4, 5, 6]. Because EEG signals are dynamic,
stochastic, non-linear and non-stationary [7], discriminative
feature extraction is of great importance.

Due to the volume conduction effect, information related
to motor imagery is mixed with unrelated brain activities and
becomes very weak in EEG. This gives rise to the signifi-
cance of spatial filter design for EEG feature extraction: to
enhance the discrimination of the projected signal in the sur-
rogate sensor space [8]. Take common spatial pattern (CSP)

as an example. Based on the assumption that raw EEG sig-
nals are instant linear mixtures of several source signals, the
desired spatial filters are designed to obtain sources with most
prominent ERD/ERS by maximizing the variance of the pro-
jected signal under one condition while minimizing it under
the other condition [9, 10].

Recently, brain activities of motor imagery more than
ERD/ERS are found in multi-functional areas using func-
tional magnetic resonance imaging (fMRI) or EEG [11, 12].
In particular, the analysis of neural connectivity is gaining
importance in the neuroscience field because it describes the
general functioning of the brain and communication between
its different regions [13, 14]. For example, casual connectiv-
ity is found in motor related core regions such as the primary
motor cortex (M1) and supplementary motor area (SMA)
during motor imagery [12]. Such casual flow or time-lagged
correlation is beyond volume conduction and is caused by
possible neuronal propagation [15]. Therefore, rather than
simply modeling EEG signals as instant mixtures of signals
with or without ERD/ERS, advancing BCI calls for computa-
tional models that are able to depict such underlying process
associated with the brain activity of interest and achieve better
classification performance.

Based on the above analysis of EEG functional connec-
tivity, it can be concluded that traditional spatial filter design
methods address the volume conduction problem but ignore
information propagation of EEG. This limitation results in
incomplete separation of discriminative signals from the in-
discriminating ones. Details of the necessity of taking the
time-lagged propagation and weakness of conventional spa-
tial filter design will be discussed in Section 2. Considering
the shortcoming of existing spatial filter design methods, we
aim to develop a novel computational model that is able to ac-
count for both information propagation and the volume con-
duction effect in EEG. Specifically, this work comprises the
following contributions: firstly, spurious effects in identifying
ERD/ERS in conventional feature extraction methods caused
by signal propagation are discussed; and secondly, a unified
model for the joint learning of signal propagation and spatial
patterns is devised.
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2. FEATURE EXTRACTION BASED ON JOINT
SPATIAL-SPATIOTEMPORAL FILTER DESIGN

2.1. Problem Formulation

Let X(t) be the multi-channel EEG signal at time t. To over-
come the volume conduction effect, a spatial filter w is usually
used to estimate the source signal

ŝ(t) = wX(t) (1)

where ŝ(t) is the estimated source signal based on the spatial
filter.

However, the existence of time-lagged axonal propagation
of macroscopic neural behavior among source signal of differ-
ent regions of the brain gives rise to mixing effects of time-
lagged source signal s(t), which follows an MVAR model

s′(t) =

p∑
τ=1

B(τ)s′(t− τ) + s(t) (2)

where coefficient matrices B(τ) describe the information
propagation effects of the resulted mixed signal s′(t).

As indicated by (1) and (2), based on the assumption that
X(t) is instant linear mixture of source signals, estimated
source signal ŝ(t) based on the spatial filter w is actually es-
timate of s′(t) rather than s(t). In particular, in discriminat-
ing analysis, spatial filter w is designed to extract the most
discriminative signal ŝ(t). However, due to time-lagged cor-
relation between s(t), discriminative signals are still mixed
with non-discriminative ones in ŝ(t). This is the motivation
to propose a joint learning function for demixing estimation
of signal propagation and spatial patterns in this paper.

2.2. Proposed Method

As discussed before, it is necessary to take the casual flow into
consideration together with spatial filter design in a unified
model to have a better estimation of s(t) rather than s′(t).
Substitute (1) into (2), then we have

s(t) = s′(t)−
p∑

τ=1

B(τ)s′(t− τ)

= wX(t)−
p∑

τ=1

B(τ)wX(t− τ)

= w(X(t)−
p∑

τ=1

A(τ)X(t− τ)) (3)

where

A(τ) = w+B(τ)w (4)

are the propagation coefficient matrices after projection and it
actually reveals the time-lagged correlation of different chan-

nels, and w+ is the pseudo-inverse of w. Let X̃ be

X̃(t) = X(t)−
p∑

τ=1

A(τ)X(t− τ) (5)

Thus we obtain

s(t) = wX̃(t) (6)

Differently from the standard MVAR analysis where the pro-
cess s(t) is usually defined as temporally and spatially uncor-
related time sequence, here we assume s(t) to be the source
signal associated with the brain additivity of interest, i.e. mo-
tor imagery. Also we deal with the estimation of s(t) using
the objective in CSP to seek the desired projected signal s(t)
that has maximized power under one condition while mini-
mized power under the other condition, expressed by the fol-
lowing optimization problem

max
1

Qc

∑
i∈Qc

var(si(t)) s.t.
∑
c

1

Qc

∑
i∈Qc

var(si(t)) = 1 (7)

where c ∈ {0, 1} indicates the class number and Qc is the
number of trials belonging to each class. Using the definition
of the variance, (7) can be expressed by

max
w

wR̃1wT s.t. w(R̃0 + R̃1)wT = 1 (8)

where R̃c is the estimate of the covariance matrices of the
modulated EEG signal X̃ under the two conditions as follows

R̃c =
1

Qc

∑
i∈Qc

X̃iX̃
T
i (9)

Let

Â(τ) = { I, τ = 0
−A(τ), τ > 0

(10)

X̃(t) becomes

X̃(t) =

p∑
τ=0

Â(τ)X(t− τ) (11)

Substituting (11) into (8) and (9), the optimization prob-
lem becomes

max
w,Â(τ)

w(

p∑
τi=0

p∑
τj=0

Â(τi)R1(τij)Â(τj))wT , s.t.

w(

p∑
τi=0

p∑
τj=0

Â(τi)(R1(τij) +R2(τij))Â(τj))wT = 1 (12)

where

Rc(τij) =
1

Qc

∑
i∈Qc

Xi(t− τi)Xi(t− τj)
T (13)
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In (12), a w is the usual spatial filter aiming at the instant con-
volution of EEG caused by volume conduction effect, while
Â(τ) can be regarded as estimates of time-lagged correlation
after being projected to the scalp EEG.

The proposed discriminative learning algorithm of sig-
nal propagation and spatial patterns is illustrated in Figure 1.
Briefly, we estimate w and Â(τ) separately using the expec-
tation maximization (EM) algorithm in [16], because to solve
the optimization problem in (12) to obtain w and Â(τ) simul-
taneously might lead to suboptimal solutions regarding the
composite cost function. A spatial filter w can be obtained
based on a fixed Â(τ) by solving (8). For Â(τ), we calcu-
late [â1j , â2j , . . . , âCj ]

T separately, which means that the in-
formation flow from different channels is optimized one by
one. When [â1j , â2j , . . . , âCj ]

T are calculated for all j =

1, . . . , C, we estimate new Â(τ) and w is updated accord-
ingly. The loop will not stop until the convergence criteria is
met. Note that during the optimization, only one w is used.
After the optimization finishes we can obtain the projection
matrix based on X̃ and select more than one pair of filters as
in the usual CSP procedure [6].

1. Input: Training EEG data that comprises N sample

blocks of X , with each block having a specific class

label;

2. Output: Spatial filter w and time-lagged correlation es-

timates Â(τ).

1. Step 1) Set the initial parameters of the spatiotemporal

filters Â(τ) as zero matrices;

2. Step 2) Set the iteration count k = 0, and repeat the

following steps until convergence whereby the criterion

is defined as the change of the norm of w being less than

a small threshold ζ:

a) Compute X̃ based on Â(τ) using (11);

b) Compute the spatial filter w by solving the opti-

mization problem in (8);

c) Compute the change in the norm of the spatial fil-

ter w by δ = ‖wk‖−‖wk−1‖; if δ > ζ or the itera-

tion count k is less than a preset number, continue

to the next step; otherwise stop the computation;

d) For j = 1 : C, calculate [â1j , â2j , . . . , âCj ]
T by

solving the optimization problem in (12);

e) Update Â(τ).

Fig. 1. Pseudocode of the proposed method

3. EXPERIMENT

3.1. Data Description

16 subjects participated in the study with ethics approval and
informed consent. All of them performed motor imagery and
passive movement on the right hand. EEG from a total of 27
channels were obtained using Nuamps EEG acquisition hard-
ware with unipolar Ag/AgCl electrodes channels. The sam-
pling rate was 250 Hz with a resolution of 22 bits for voltage
ranges of ± 130 mV. A bandpass filter of 0.05 to 40 Hz was
set in the acquisition hardware.

In the experiment, the training and test sessions were
recorded on different days from the subjects performing mo-
tor imagery. During the EEG recording process, the subjects
were asked to avoid physical movement and eye blinking.
Additionally, they were instructed to perform kinesthetic mo-
tor imagery of the chosen hand in the two runs. During the
rest state, they did mental counting as instructed to make the
EEG signals more constant. Each run lasted for approxi-
mately 16 minutes comprising 40 trials of motor imagery and
40 trials of rest state. Each training session consisted of 2
runs and the test session consisted of 2-3 runs of experiments.

3.2. Data Processing

For each trial of data, time segments of 0.5 to 2.5s after the
cue are used following most of the previous works, such as
[17, 6]. The raw data is filtered using a bandpass filter with
passband 8-35Hz for the same reason. The filtered training
data is used to train the feature extraction model based on
the proposed method as described in Section 2.2, and the ob-
tained training features are used to train a support vector ma-
chine (SVM) classifier. During the optimization procedure,
the maximum number of iteration is 30 and ζ = 0.02. Af-
ter the training step, test features can be obtained based on
the feature extraction model and then classified by the SVM
classifier.

3.3. Experiment Results

Table 1 summarizes the performance of the proposed feature
extraction method in term of the classification accuracy of the
test data, where we refer the proposed method as joint spatial-
temporal filter design (JSTF). Figure 2 is used to show the
comparison result in a more intuitive way.

It is revealed from the comparison that the proposed
feature extraction method improves the performance of the
classifier, with an average classification accuracy of 67.89%
higher than that of CSP (65.56%). Moreover, a paired t-test is
applied to the accuracy result, which is used to further eval-
uate the effectiveness of the proposed method. In particular,
the significance of the improvement is validated at the 5%
confidence level with p = 0.014. From the above results, we
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Table 1. Session-to-session transfer test resultsXXXXXXXXXXMethod
Subject

1 2 3 4 5 6 7 8

JSTF 69.16 53.33 57.08 70.00 66.25 69.58 75.83 92.08
CSP 65.00 51.25 55.00 66.67 54.58 67.08 77.08 94.16

XXXXXXXXXXMethod
Subject

9 10 11 12 13 14 15 16

JSTF 72.08 60.83 50.83 82.00 52.08 76.25 67.08 71.66
CSP 74.58 61.66 46.25 77.00 51.25 72.08 65.83 69.58

are able to confirm that the performance improvement of the
classifier is achieved with the proposed method.
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Fig. 2. Accuracy comparison between CSP and JSTF

4. DISCUSSION

The proposed computational model described in (12) links to
the sparse connectivity analysis (SCSA) model in [16] and
MVAR-ICA model in [15]. However, the aim of those two
works is to estimate true connectivity between sources, there-
fore independence of the estimated source is the major con-
cern in the calculation of both volume conduction demixing
matrix and connectivity model. In our work, however, the
objective is discriminating EEG data from two classes, so
we identify the model using objective function based on the
power of the projected signals to extract signals with most
prominent ERD/ERS.

CSP is one of the most successful spatial filter design
methods which seeks optimized spatial filters that maximize
the variance of the spatially filtered signal under one condi-
tion while minimizing it under the other condition. However,
as indicated in (1) and (2), merely linear spatial filters can
not separate non-discriminative signals from discriminative
ones effectively due to the existence of time-lagged correla-

tion. Moreover, such information propagation could relate
to non-stationarity of EEG. As (4) indicates, after projection
time-lagged correlation exists in scalp EEG and it is possi-
ble that an electrode that actually contains no discriminative
information could be given a high weight due to information
flow from channels containing ERD/ERS. However, without
the original discriminant power, these channels are not sta-
ble enough, as their dependence on other channels could be
covered by noise when those sources are not sufficiently ac-
tivated. The above analysis is the motivation to propose the
unified model for discriminative learning of signal propaga-
tion and spatial patterns. By jointly estimating time-lagged
correlation coefficient matrices and spatial filter, more effi-
cient feature extraction can be achieved. The results in Table
1 validate that our computational model can improve the clas-
sification accuracy with statistical significance.

5. CONCLUSION

Co-existence of brain connectivity and volume conduction ef-
fect in EEG measurements can give rise to spurious effects in
identifying activities associated with motor imagery best. In
this paper, we have established a novel computational model
that accounts for both time-lagged correlations between sig-
nals and the volume conduction effect. The model is identi-
fied via a joint signal propagation and spatial pattern learn-
ing algorithm in an EM manner. Based on the proposed oint
spatial-temporal filter design method, underlying process of
brain activity during motor imagery is better described and
improvement in classification accuracy is achieved. As shown
in the experiment results, the significance of this improvement
has been validated with statistical significance.
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