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ABSTRACT

Decoding movement targets from neural activity in motor cortex us-
ing invasive brain-computer interface (BCI) has potential application
to help disabled patients. Most works employed spike sorting to ob-
tain the single units (SUs) for decoding from the extracellular elec-
trode recordings. However, spike sorting is difficult, computational
demanding, and is often limited by the spike waveform variability
especially in low SNR and high neuronal density conditions. To ad-
dress these issues, we proposed a decoding method using unsorted
spike trains from recording electrodes based on the maximal likeli-
hood (ML) estimation approach. An experiment was performed to
test neuronal data recorded from a rhesus monkey performing the
center-out movement task of eight targets. The results showed that
the proposed method yielded average correct decoding rate of 98.5%
compared to the SU based method that yielded correct decoding rate
of 96.3%. The results also showed that the proposed method yield-
ed improved computational efficiency. Thus the proposed method
showed potential for real time BCI applications with large scale of
neuronal recordings.

Index Terms— Brain computer interface, maximal likelihood,
motor cortex, neural decoding, Poisson distribution.

1. INTRODUCTION

Signal processing has recently emerged to study brain signals com-
municated by neurons, i.e., so called action potentials or spikes [1,
2]. One popular application for such study is to help disabled pa-
tients with disease in the motor system such as spinal cord injury,
pontine stroke and amyotrophic lateral sclerosis, to restore move-
ments by BCI which could translate the neural activity into control
signals to operate on efferent prosthetic devices [3, 4, 5]. One of
the core part in such system is of course the neural signal processing
which provides such translation from brain activity to device. Dur-
ing the last decade, several groups have demonstrated the capability
of extracting cortical neural activity from the motor areas of brain for
guiding cursor movement on computer screen through experiments
on both non-human primates [6, 7, 8, 9, 10] and humans [11, 12, 13].
These experiments showed great promise for the restoration of func-
tional limb mobility for the patients with broken neural pathway in
between brain and limbs. However, it is still far from practically
usable and commercially available.

The current invasive BCI employed the intracortical electrode
array implanted in the cerebral cortex to record extracellular neu-
ronal activity. Through threshold detection, the neuronal spikes can
in principle be obtained and the spike waveforms can be extracted
out. Usually, these spikes may not come from only one SU but also
several individual neurons. The conventional systems have to fur-
ther identify and attribute the spike waveforms to each SU by spike

sorting. Although lots of works on spike sorting through recogniz-
ing the spike waveforms of different neurons, it has been reported
that there is some limitation on sorting [14, 15] due to the inherent
neuronal noise and waveform variability. The current BCI operation
needs experienced human operator intervention to adjust parameters
and this becomes an obstacle for clinically practical uses of BCI.

Recently, the aggregated neuronal activity attracted BCI com-
munity after the promising results by local field potential in neural
decoding. Multiunit activity, other than spike trains, was shown to
be able to provide the comparable performance of predicting hand
movement in monkeys [16]. In addition, Ventura presented a com-
putational paradigm of spike train decoding without explicit sorting
[17], but through statistical estimation the SU tuning parameters. In
[18], a BCI without spike sorting was further built by using parti-
cle filtering and parametric modeling of tuning curves. These works
suggested that unsorted spike trains detected from recording chan-
nels of the implanted electrode array also contain some stimulus-
specific information and indicated the possibility of neural decoding
without sorting for movement. Different from these works, we in-
vestigated neural decoding using unsorted spike trains without sta-
tistical estimation or parametric modeling of SU tuning. Instead, we
employed ML approach and adapted nonparametric tuning curves to
unsorted spike trains for estimating movement targets.

2. MAXIMAL LIKELIHOOD MODEL

2.1. Population of single unit spike trains

Probabilistic inference based methods for neural decoding such as
ML or more general Bayesian methods, have been widely used in
neuroscience. These approaches are efficient when only the identi-
fication from a finite set of objects is desired, such as the target lo-
cations of center-out reaching movements. Although it is possible to
decode single neuron to reconstruct the sensory stimulus in simple
biological systems [1], evidence from nonhuman primates showed
that single neuron is only broadly tuned with movements and not e-
nough for the purpose movement decoding. However, a population
of motor cortical neurons could provide a good estimate of move-
ment parameters [19, 20]. Moreover, a neural network model has
been presented in [21] which can implicitly perform the probabilis-
tic computation by a population of spiking neurons. Same as the
existing works [21, 22, 23], we modeled the probability distribution
of spiking neuronal activity conditioned on movement direction. It
usually assumes the probability of a spike within a time interval is u-
niform and independent, which yields the Poisson distribution model
for conditional probability given target direction 𝑑,

𝑃 (𝑟∣𝑑) = [𝜎(𝑑)Δ𝑡]𝑟 exp[−𝜎(𝑑)Δ𝑡]/𝑟! (1)

where 𝑟 is the number of spikes within the observation interval Δ𝑡
second, and 𝜎(𝑑) is the tuning curve of the sorted SU which repre-

954978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



sents the average firing rate to each direction [21, 24]. By assuming
conditional independence of spike counts 𝑟𝑖 of each SU indexed by 𝑖
extracted from the same channel, a joint conditional distribution for
the ensemble neuronal activities {𝑟𝑖} can be obtained.

𝑃 ({𝑟𝑖}∣𝑑) =
∏

𝑖

𝑃 (𝑟𝑖∣𝑑) =
∏

𝑖

[𝜎𝑖(𝑑)Δ𝑡]𝑟𝑖

𝑟𝑖!
exp[−𝜎𝑖(𝑑)Δ𝑡] (2)

In fact, the spike count correlation coefficients are generally very s-
mall among cortical neurons within short time interval as document-
ed in [25, 26] and thus such conditional independence is a reasonable
approximation. Moreover, we defined log likelihood (LLH) function
𝐿𝑠𝑢

𝑐 (𝑑) for the 𝑐-th recording channel of an electrode array as taking
log of 𝑃 ({𝑟𝑖}∣𝑑) and further removing the terms irrelevant of 𝑑 as,

𝐿𝑠𝑢
𝑐 (𝑑) =

∑

𝑖

𝐿𝑖(𝑑) =
∑

𝑖

𝑟𝑖 log[𝜎𝑖(𝑑)]−
∑

𝑖

𝜎𝑖(𝑑)Δ𝑡. (3)

Due to the physical configuration of the electrode array and large
distance of neighboring channels, the neuronal activities of different
channels are uncorrelated. Given the available sorted spike trains
from all channels, the estimated movement direction 𝑑𝑠𝑢 could be
inferred through maximal likelihood estimation (MLE), so that the
sum of LLH functions of all SUs from all channels is maximum.

𝑑𝑠𝑢 = argmax
𝑑

∑

𝑐

𝐿𝑠𝑢
𝑐 (𝑑) (4)

2.2. Unsorted spike trains

The signal recorded from each channel of the implanted electrode
array describes the extracellular neuronal activity only. The single
unit spike trains are not immediately available due to the mixing ac-
tivities of different nearby neurons, and thus can only be extracted by
spike sorting. However, the SNR of recording, waveform variability
and local neuronal density greatly limit the reliability of spike sort-
ing [14] and thus possibly yield the biased rate code estimate [15].

Recently, [16] has demonstrated that the multiunit activity could
predict the hand movement very well possibly due to the movemen-
t specific information embedded in multiunit activity. In addition,
[17] presented a statistical computation framework to estimate the
tuning parameters of the underlying SUs from the unsorted spike
train. These works indicated that the stimulus specific information is
possibly contained in the unsorted spike train. This could be due to
the possible columnar structure related to movement in motor cortex
which was reported to exhibit local spatial organization by the kine-
matics [27, 28, 29, 30]. The nearby neurons recorded from the same
channel usually tend to prefer similar values of kinematic parameters
and thus have similar tuning characteristics.

Considering these new evidences, we investigated neural decod-
ing using unsorted spike trains in this paper. In contrast to [17],
we did not try to estimate the individual tuning parameters of each
SU underlying the unsorted spike trains, but instead focused on the
overall tuning characteristics of the unsorted spike trains. Similar
to previous works [17], we modeled the unsorted spike trains as the
superimposed SU spike trains by pooling them together. It is known
that the superposition of Poisson processes is also a Poisson process
[31]. Since we employed the Poisson model for the spike counts
of SU spike trains, the similar Poisson model was used for that of
the unsorted spike train. Hence, the LLH function can be similarly
derived as in (3) for the unsorted spike train of the 𝑐-th channel as
following,

𝐿𝑐(𝑑) = 𝑟𝑐 log[𝜎𝑐(𝑑)]− 𝜎𝑐(𝑑)Δ𝑡 (5)

where 𝑟𝑐 is the spike count within the time bin Δ𝑡 second, and 𝜎𝑐(𝑑)

is the tuning curve for the 𝑐-th recording channel. The MLE 𝑑 using
the unsorted spike trains can be similarly defined as

𝑑 = argmax
𝑑

∑

𝑐

𝐿𝑐(𝑑). (6)

From (3), we can see that LLH function is linear on the spike
counts 𝑟𝑖 given the neuronal tuning curves, i.e., a weighted aver-
age over spike counts. Based on the evidences of cortical columnar
structure presented in [27, 28, 29, 30], if the tuning characteristics
of SUs from the same recording channel are similar such as cosine
tuning with similar preferred directions [28], the summed LLH from
SUs shown in (3) can in fact be approximated well by (5) using the
unsorted spike train. Such approximation will be shown in Sec. 4.1
on neuronal data recorded in vivo from a monkey experiment.

3. MOVEMENT TASK AND RECORDINGS

The experiment on reaching movements was conducted in Kording
Lab at Northwestern University. A rhesus monkey was trained to
perform the center-out reaches to eight peripheral targets evenly s-
paced in a circle presented on a computer screen in front of it. The
monkey operated on a two-link planar manipulandum and feedback
about the movement was shown on the screen. The handle position
was displayed as circular cursor while the peripheral targets were
displayed as a square of larger size than the circular cursor. Every
trial started with acquisition of the origin displayed as a square tar-
get and holding it for 0.3-0.5s set randomly by computer. After this
hold period, the monkey controlled the manipulandum to move the
circular cursor to reach a pseudo-randomly chosen peripheral target.
After reaching the chosen target and holding it at least 0.2-0.5s, the
monkey received a liquid reward.

One 100-channel intracortical electrode array was implanted in
the arm area of primary motor (MI) cortex. Spike sorting was care-
fully performed offline by manual clustering. Totally 172 single u-
nits were sorted from 90 channels recorded with data, and 175 suc-
cessful trials for all eight targets (about 20 trials for each direction)
were obtained in one session. Table 1 showed the distribution of sort-
ed SUs over the recording channels, i.e., how many sorted SUs on
one channel (and its percentage over all 90 channels). More details
of neuronal recording can be found in [32]. 1

Table 1. Distribution of SUs over recording channels.
# SUs 1 2 3 4

# Channels 39 (43%) 23 (26%) 25 (28%) 3 (3%)

4. RESULTS AND DISCUSSION

The proposed decoding method was tested on the neuronal da-
ta recorded in vivo from a rhesus monkey performing center-out
reaching movement task [32]. Since the available neuronal data has
already been carefully sorted, we simulated the unsorted spike trains
by superimposing the SU spike trains from the same recording chan-
nel. Although there are 39 channels with only one SU recorded as
shown in Table 1, we still treated them as unsorted spike trains since
in practical neuronal recording there is no prior information about
whether the recorded spike train is composed of only SU or mixture

1In this paper, only the data from monkey C was analyzed and it is avail-
able at http://crcns.org/data-sets/movements/dream.
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of multiple units. Although the superposition of SU spike trains is
slightly different from the unsorted spike train in practical neuronal
recording, [18] has shown that the superimposed spike trains have
very similar tuning parameters to the unsorted spike trains. Thus, it
is appropriate to use the superimposed spike trains for testing and
comparing with SU spike trains for neural decoding.

4.1. Directional tuning and LLH for unsorted spike trains

At the training phase of ML model, 5 training trials for each direction
𝑑 ∈ {0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°} were selected
randomly for estimating the tuning curves of both sorted SUs and
unsorted spike trains. Instead of using the statistical estimation or
parametric modeling of tuning parameters as in [17, 18], we used the
nonparametric tuning curves, i.e, averaged responses conditioned on
direction. The whole training process thus used 40 trials of total
175 trials available, and the other 135 trials not used in training were
employed for test. One single observation interval was fixed at Δ𝑡 =
500ms for all trials for counting spikes.

We showed our results on a single trial first and then followed by
the whole data set. First, the comparison of LLH for SUs and the un-
sorted spike trains was shown in Fig. 1(a) and 1(b) for two different
channels 39 and 84, respectively. The results were based on a sin-
gle test trial (trial 134) with actual movement direction of 180°. The
dashed lines showed the LLH of three SUs while the black solid line
showed the sum of them, corresponding to (3). It can be seen that the
SUs can only provide limited or even none discriminative LLH in-
formation over the eight possible directions. However, the summed
LLH by SUs could yielded better distinction over different direction-
s, although it is still not informative enough to give correct estimate.
Moreover, the LLH for unsorted spike train of the same channel de-
noted by the red solid line can approximate the summed LLH of SUs
very well within a constant level, which shows the good approxima-
tion of (5) to (3). Although the SU or the single recording channel is
not capable to provide enough discriminative LLH, the population of
all SUs or recording channels can yield a good discriminant which is
a bell shaped function over the directions as shown in Fig. 1(c). Al-
though the SU-based method usually could yield a correct estimate
of actual direction, Fig. 1(c) showed an example of failure case for
it, while the proposed method still can give the correct estimation
of direction. This is partly due to the noisy LLH of SUs as shown
in Fig. 1(a) where the summed LLH of SUs has a significant drop
at the actual direction compared to the strong competitors 225°and
135°. This is particular evident for the SU 1 of channel 39 which
dominates the summed LLH of SUs at the directions 135°, 180°and
225°shown in 1(a). On the contrary, the proposed method can yield
stable and reliable LLH which is more smooth and less fluctuating.

The LLH function by the proposed method is narrower and
sharper compared to that by the SU-based approach as shown in a
single trial in Fig. 1(c). This phenomenon is not by chance and ac-
tually consistent in the whole data set and we showed it in Fig. 1(d)
and Fig. 1(e), respectively, in the form of the probability confusion
matrix. Such matrix showed the mean posterior probability distribu-
tion of movement direction given the whole data set. The color code
denotes the mean probability of a possible direction estimate (in the
𝑥-axis) given the true movement direction 𝑑 (in the 𝑦-axis) for the
whole data set. The diagonal elements indicate the correct estimates,
while any off-diagonal element indicates an incorrect estimate. It
can be seen that the proposed method can yield shaper probability
distribution and thus could provide more accurate estimate. In ad-
dition, the most probable candidates for direction estimate clustered
(circularly) along the diagonal. Hence, it is more important for LLH
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Fig. 1. Comparison of the SU-based and the proposed methods by
LLH and probability confusion matrix.

to discriminate the MLE over the nearby directions (usually the sec-
ond most probable candidate) in order to provide more robust and
reliable estimate. This can be seen in 1(c) for the proposed method
which showed the MLE has a larger margin over the direction of
225°, compared to the SU-based approach.

4.2. ML decoding with different parameters

We further conducted experiments over two different periods of
500ms for both SU-based and the proposed methods. One is before
movement (-500ms - 0ms, where 0ms is the movement onset) and
the other is peri-movement (0ms - 500ms). The decoding perfor-
mance was measured by the correct estimation of directions. We
further assessed one critical parameter in population coding, i.e., the
number of units used for decoding. To develop statistically mean-
ingful results, such procedure was repeated 100 times for estimating
the standard error (SE) of the mean correct estimation rate by the
bootstrap method, which reflected the cross validated results.

Fig. 2 showed the results of decoding where the filled dots de-
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noted the mean correct estimation rate overlaid with SE bars. First,
it can be seen clearly the significantly better decoding performance
by both SU-based and the proposed mthods over the peri-movement
period than those over the period of before movement, and all ex-
ceed the chance level (12.5%) significantly. This can be explained
by the much stronger response of MI cortex at the period of peri-
movement than that before movement, which is consistent with [23]
that the MI cortex is largely related to the movement execution rather
than the decision making of the target. Second, we can see that in
both periods, the decoding performance using unsorted spike trains
is comparable to or even slightly better than that of SUs. When using
90 units, the SU-based method only yielded 91.3% correct accuracy
while the proposed method attained 98.5%. Such direct comparison
is not totally meaningful since the same number of unsorted spike
trains usually contain more neurons than SU spike trains. However,
the decoding by all SU spike trains only yielded correct accuracy of
96.3%, even still slightly lower than that by unsorted spike trains.
Furthermore, the region of small number of units showed superi-
ority of neural decoding using unsorted spike trains, since it can ob-
tain better performance without demanding computation imposed by
spike sorting and thus can achieve more efficient power consumption
which is very critical for chronically implantable neural device.
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Fig. 3. Decoding performance of the proposed method with respect
to the number 𝑁𝑡𝑟 of training sets.

It is well known that the training process for BCI is tedious.
Here, we tested how fast training our proposed method can achieve
and showed the decoding performance upon different number 𝑁𝑡𝑟 of
training sets (the number 𝑁𝑡𝑟 of training trials for each direction 𝑑)
as shown in Fig. 3. It can be seen clearly the better performance with
larger training sets. Notice that only three training sets can yield a
reasonable performance, almost comparable to that attained by five
training sets. In particular, the performance increases very fast from
single training set to three training sets, showing the fast adaptation
capability of ML decoding using unsorted spike trains. Similar ev-
idence for Skellam distribution based ML decoding with SUs has
also been reported in [33] for decoding finger movements. Our work
has shown it also happens in neural decoding using unsorted spike
trains. This is very desirable for BCI applications whose calibra-
tion for new user is usually slow. We hope our work can speed up
the training process for invasive BCI, especially without tedious and
time-consuming spike sorting.

4.3. Discussion

This work has adapted ML decoding to the unsorted spike trains,
which avoids the difficult and tedious spike sorting that could yield
biased firing rate estimate. Different from [17] which capitalized on
statistical estimation of individual tuning parameters of SUs from
the unsorted spike train, we focused on the unsorted spike trains and
the their tuning characteristic and LLH function. Our results showed
the unimodal characteristic of LLH function of the unsorted spike
train. Although [18] has reported that the unimodal tuning curves by
parametric modeling were often found for the unsorted spike trains,
we employed nonparametric tuning in contrast to [18] and instead
studied the LLH discriminant function for decoding. In addition,
results in Sec. 4.1 showed the possible probabilistic computations
implicitly done by the population of neurons, which is consistent
with findings of [21, 22, 34, 35, 36], and hence further promoted the
probabilistic inference method for neural decoding.

5. CONCLUSION

This paper proposed a neural decoding method using unsorted spike
trains based on the maximal likelihood approach. We tested the pro-
posed method on neuronal data recorded from a monkey during an
experiment of eight-target movement task. The results showed that
the movement direction can be classified with 98.5% accuracy us-
ing the proposed method, compared to 96.3% using sorted SU-based
method. In addition, the proposed method can be trained very fast
with only 3-5 training sets, and thus has an immediate relevance for
BCI application. Note that unsorted spike trains are less computa-
tionally demanding and hence more efficient on power consumption
compared to sorted spike trains. It provides a balance between per-
formance and computational efficiency that appears to be critical for
future large scale neural recordings on the order of one thousand
electrodes [37].

Our results showed that the performance fluctuation with ran-
dom selection of subset of units. Hence the optimal selection of sub-
set of units needs to be further investigated to achieve more compu-
tational efficiency for practical BCI applications. In addition, since
we explicitly used the movement onset timing as a cue, the perfor-
mance of the proposed method for asynchronous (i.e., self-paced)
neural decoding has to be further studies for online neural prosthetic
applications such as self-feeding reported in [38].
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