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Abstract— Physiological sensor based workload estimation
technology provides a real-time means for assessing cognitive
workload and has a broad range of applications in cognitive
ergonomics, mental health monitoring, etc. In this paper we
report a study on detecting changes in workload using multi-
modality physiological sensors and a novel feature extrac-
tion and classification algorithm. We conducted a cognitive
workload experiment involving multiple subjects and collected
an extensive data set of EEG, ECG and GSR signals. We
show that the GSR signal is consistent with the variations
of cognitive workload in 75% of the samples. To explore
cardiac patterns in ECG that are potentially correlated with
the cognitive workload process, we computed various heart-
rate-variability features. To extract neuronal activity patterns
in EEG related to cognitive workload, we introduced a filter
bank common spatial pattern filtering technique. As there can
be large variations in e.g. individual responses to the cognitive
workload, we propose a large margin unbiased recursive feature
extraction and regression method. Our leave-one-subject-out
cross validation test shows that, using the proposed method,
EEG can provide significantly better prediction of the cognitive
workload variation than ECG, with 87.5% vs 62.5% in accuracy
rate.

I. INTRODUCTION

Cognitive workload, the level of mental resources required
of a person at a time, affects human ability in information
processing and decision making. Therefore, it is an important
cognitive science discipline with a wide range of applica-
tions, e.g. cognitive ergonomics to optimize human well-
being and system performance [1] [2].

An emerging approach to cognitive workload assessment
is through computing various physiological signals, which
allows real-time and unobstrusive monitoring in constrast
to conventional but obstrusive measures using user (and/or
expert) reports such as NASA-TLX [3]. For example, heart
rate variability (HRV) has been connected to mental effort in
human computer interaction in [4]. Galvanic skin response
(GSR) has also been correlated with levels of cognitive pro-
cessing [5]. Electroencephalogram (EEG) studies have also
demonstrated that specific rhythmic powers are correlated
with difficulty level of cognitive tasks such as n-back and
flight simulation tasks [6]. Recently in [7], EEG analysis of
cortical connective networks was also used to differentiate
specific mental arithmetic tasks.

However, it is still an open question how to precisely
assess cognitive workload using the physiological signals
that are subject to large variability over time and across
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subjects [8], [9]. While multi-channel EEG was employed
in various prior studies, usually only individual channels
were investigated separately. Compared to joint analysis of
multiple channels, individual channel analysis tends to be
more prone to variability, because of limited information and
poor spatial specificity and low signal-to-noise ratio of EEG.
Another open question is that, due to inter subject variability,
the individual response to the workload may vary largely
from person to person; and this may affect the accuracy of
cognitive assessment tools.

The present work consists of a new attempt to address
the abovementioned issues. First, we introduce a fiter bank
common spatial pattern filtering technique to identify and
extract cognitive workload-related spatial-spectral signatures
in multi-channel EEG. Second, to address the varibility of
individual’s physiological response to cognitive workloads,
we designed a large margin unbiased regression machine.
We have conducted a cognitive workload experiments and
used 16 subjects with complete data recordings in an offline
study with leave-one-subject-out cross validation. The result
indicates that change of cognitive workload can be detected
in all the physiological signals including GSR, EEG and
heart rate. Especially, the cross validation test shows that
the EEG features provide better prediction of the cognitive
workload variation than both single-channel EEG features
and HRV features.

II. COGNITIVE WORKLOAD DATA SET

In this work we recruited healthy adult subjects who
gave written constents to participate in the study which was
ethically approved by the National University of Singapore
Institutional Review Board beforehand. The subjects were
placed on a comfortable chair. A PPG device connected to
multiple sensors attached to the subjects and the following
signals were acquired: electrocardiogram (ECG), GSR, SpO2
(not used in this study). A separate EEG amplifier of
Neuroscan connected to a full-head EEG cap of 40-channels
referenced to the right mastoid. This study used 15 channels
only, namely, F3, Fz, F4 , FC3, FCz, FC4, C3, Cz, C4, CP3,
CPz, CP4, P3, Pz, P4.

The cognitive workload procedure consisted of the follow-
ing stages. In the first stage, the subjects were resting in the
chair for 5 minutes. In the second stage, the subjects received
a sequence of 6 cognitive tasks on cognitivefun.net, including
Go/No-go visual reaction test, stroop test, fast counting test,
speed run test, visual forward digit span test, and working
memory test. The whole sequence of cognitive workload
lasted 30 minutes for each subject. In the third stage, the
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subjects relaxed for 10 minutes. Throughout the procedure
any excessive movement was not allowed.

We performed data screening and rejecting of subjects’
data which were affected by recording errors or signal quality
issues. There were 16 subjects’ data left for this study.

III. PROPOSED EEG-BASED WORKLOAD MEASURE

We consider discriminative spatial-spectral EEG com-
ponents in relation to different workload conditions. The
spectral contents in EEG indicate specific macroscopic neural
oscillations, and the common rhythmic activity frequency
bands are well defined [10]. On the other hand, EEG suffers
poor spatial resolution and high noise level, while spatial
filtering provides an effective means for improving spatial
specificity and signal-to-noise ratio [11]. In this work, we
adapt a method developed in [12] to extract discriminative
spatial-spectral EEG components that contrast EEG between
the different workload conditions presented in the data. This
method is described in the subsection below.

In the subsection thereafter, we also propose a new
recursive feature selection and regression algorithm. We
discuss the justifications for unbiased regression for mapping
features into contrasting cognitive workload states.

Here we would like to emphasize that this work links
the workload assessment to a special binary classification
problem. Two contrasting classes are the resting-to-workload
class wy (i.e. from the first stage to the second stage in the
above protocol), and the workload-to-resting class w; (i.e.
from the second to the third stage in the above protocol).

A. Joint spatial-spectral feature extraction

Let’s consider the spatial-spectral filtering in the spectral
domain, where an n.-channel EEG segment with a sampling
rate of Fy-Hz can described by an n. X ny matrix.

r11 o o Ting
X=1 1 M

Tn.1 xncnf

where z;; denotes the discrete Fourier transform of the i-th
channel at frequency w; = %Fs

A joint spatial-spectral filter on X can be essentially repre-
sented by a spatial filtering vector w € R"™<*! and a spectral
filter vector f € R/ %!, As there can be multiple interesting
rhythmic components in EEG, we need to examine each
and every EEG frequency bands possibly related, including
theta (4-THz), alpha(7-13Hz), low beta(12-16Hz), mid beta
(16-20Hz), and high-beta (20-28Hz). And we set f to be
a window function specific for each band, with its element
being 1 if within the band or being 0 otherwise.

The feature g representing the EEG rhythmic power of a
spatial component is

g= %diag {ﬁ (wTX) } f ?)

where 7' is the duration of the EEG signal, the wave line
~ on the right side of the equation denotes the conjugate

of a complex value, and the diag() function stands for the
diagonal vector of a matrix.

And the spatial filter is constructed to contrast two classes
by minimizing or maximizing the Rayleigh quotient [13]
(see [14] for a Bayesian spatial filtering analysis related to
Rayleigh quotient).

wlE[R|w;]|w
wTE[R|ws]w
where E means the expectation operator and R is the
covariance matrix of the EEG signal. The minimization can
be solved using a generalized eigen value solution [11].
Therefore, for each of the four frequency bands, we
construct two spatial filters that maximizing or minimizing
the Rayleigh quotient. In total there are 8 features from the
spatial-spectral filtering method.

3)

B. Modelling the workload states in the feature space

A traditional way to measure the workload is by contruct-
ing a regression function that maps the feature vector to a
workload metric. However, due to large variations across
subjects, the mapping function may vary considerably and
a single physical model may not suffice to represent all. On
the other hand, in many workload cases like in our protocol,
there are only, strictly speaking, three physiological workload
samples from the three stages respectively, making it difficult
to build a subject-specific model.

In view of the challenges, we resort to building subject-
independent model that considers large variations between
subjects. To this end, we design an unbiased regression
approach in the following.

Let g the feature vector consisting elements of g. A linear
regression that maps g to a workload metric £ works by

Z=ug+b “

where u is the linear coefficient vector and b the bias.

As discussed above, the bias b is subject to large variation
between subjects. To eleminate the effect of b, we considers
the change of workload metric instead of the absolute work-
load. In our data set, there were two cases of such change,
one from the initial resting stage to the workload stage, the
other from the workload stage to the final resting stage.
So the problem can be formulated as finding the projection
vector u that yields

cz=c-uld(g) >=0 &)

where d(g) is the change of the feature vector in either
of the abovementioned changes, c is -1 or 1 representing
the resting-to-workload change, or the workload-to-resting
change.

Following a similar precedure of large margin formulation
to [15], we write the special zero-bias learning problem as

min[.J(u) = %(uTGGTu + N —2u’GCe) + %uTu] (6)

where A (A =1 tentatively in this study) is a regularization
coefficient, G is the matrix of all d(g) samples as column
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vectors, N the number of samples, C is the diagonal matrix
of ¢, e is the all 1 vector.
The solution to minimization of .J is given by

-1
u= {%I +G <I — %eeT) XT] GCe @)
where I is the identity matrix.

Thus, for a given set of training samples d(g), we designed
a recursive feature selection and regression algorithm. The
intial set of selected feature is null. The algorithm tests each
and every of the feature, and uses Eq. 7 to learn the unbiased
regress function coefficient vector u. The best feature is
choosen if it maximizes the correlation coefficient between
the ¢ vector and the regression result z = u”'d(g). Due to
limited space, the detailed steps of the algorithm are omitted.

To examine the generalized performance of the method,
we used an leave-one-subject-out validation approach.
Specifically, we built a workload prediction model by using
the data from the other subjects. In other words, each subject
presented as a test sample and the other subjects as training
samples.

IV. DATA ANALYSIS AND RESULTS

A. User ratings and GSR signal

Subjective ratings of stress were collected immediately
after each data collection stage, using a widely used ques-
tionnaire called the State-Trait Anxiety Inventory (STAI).
This questionnaire attempts to characterize two types of
stress. The is characterized by feelings of anxiety caused by
fear, nervousness, discomfort and arousal of the autonomic
nervous system, hence termed state anxiety. This form of
stress characterizes feelings at the time of perceived danger
or threat, and is thus considered short term or temporary. The
second form of stress is characterized by feelings of anxiety
caused by stress, worry, discomfort etc. that one experiences
on a daily basis. This form of stress characterizes feelings
that make a person predisposed towards being stressed in
particular ways, possibly because of factors that are longer
term.

The change of the subjective ratings is illustrated in
Figure 1 left panel. Apparently, 12 out of 16 subjects felt
increased stress from Stage 1 (resting) to Stage 2 (cognitive
tasks), while 10 subjects felt decreased stress from Stage 2
to Stage 3 (final resting).

The mean GSR value in each stage was computed and
compared between different stages. The result is illustrated
in Figure 1 right panel. As expected, all but one subjects
produced lower GSR in Stage 2 than Stage 1, which can be
attributed to an increase in perspiration due to the workload
as well as the associated stress. Comparing Stage 3 to Stage
2, there were 12 subjects producing higher GSR, but there
were 4 subjects did not show the expected GSR increase.
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Fig. 1. Change of user stress ratings and GSR values. The x-axis represents

the change of the score (user rating or GSR value) from Stage 1 to Stage 2
in the cognitive workload experiment, the y-axis from Stage 2 to Stage 3.
Each data point represents a particular subject session.

B. Change of heart rate variability based workload predic-
tion

Heart rate variability (HRV) features were computed from
heart beat interval sequency in each stage. To measure
HRV from ECG, the term RR interval is used, where R
represents a time point corresponding to the peak of the
QRS complex in ECG. When term NN is used in place
of RR in HRV measurement, the emphasis is on the fact
that the processed beats are normal beats. In this study,
we considered 10 time-domain features only, including max,
min, mean, median, SDNN: the standard deviation of NN
intervals; SDSD: the standard deviation of the successive
differences between adjacent NNs; NNS5O0: the number of
pairs of successive NNs that differ by more than 50 ms;
pNNS50: the proportion of NN50 divided by total number
NNs; RMSSD: the square root of the mean of the sum of
the squares of the successive differences between adjacent
NNs. The HRV features were computed using the software
provided at https://github.com/jramshur/HRVAS.

As we found that any individual HRV feature may not
correlate with the workload variations, we used the same
recuisive feature extraction and large margin unbiased re-
gression machine, which is described in the previous section.

The result is illustrated in Figure 2. If using all subjects’
data for training, the first three selected ECG features were
TINN, MIN, and mean HR (bpm). It appears from the
result that the second and the third selected features did
not contribute much to workload measurement. With three
features, the measurement shows increased workload level
from Stage 1 to Stage 2 in 13 subjects, and decreased
workload level from Stage 2 to Stage 3 in 11 subjects.

C. EEG features and workload prediction

For all the subjects as a whole, the proposed algorithm
identified the top three features in high beta band, middle
beta band and alpha band. In the illustration Figure 3, we
can see that the majority contribution for workload measure
comes from the first feature, i.e. the high beta band activity.

Furthermore, the above graphs indicate that the EEG-based
workload measurement may predict with higher accuracy the
variation of workload, especially from resting to cognitive
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Fig. 2. Change of workload score predicted by heart rate viarability. Refer
to Fig. 1 for the meaning of the axes. From left to right are the results with
1 selected feature, 2 selected features and 3 selected features from ECG
data, respectively.
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Fig. 3. Change of workload score predicted by EEG. Refer to Fig. 1 for the
meaning of the axes. From left to right are the results with 1 selected feature,
2 selected features and 3 selected features from EEG data, respectively.

task and vice versa. In Table I, we give the prediction
accuracy rate: the number of cases (subjects) for which the
prediction gives increasing values from Stage 1 to 2 and also
decreasing values from Stage 2 to 3. Apparently the EEG
features based prediction gives the highest accuracy among
the three.

TABLE 1
COMPARATIVE ACCURACY OF WORKLOAD CHANGE PREDICTION. HRV
FEATURES ARE EXTRACTED FROM 1-LEAD CHEST ECG.

[ Method

[ GSR [ HRV | EEG
| Accuracy ||

75% | 62.5% | 815% |

V. CONCLUSION

In this paper we have reported a new study on multi-
modality physiological signals in relation to variations of
workload. Using discriminant spatial-spectral feature extrac-
tion and unbiased large margin regression, we have shown
that EEG can predict the variations of workload condition
with higher accuracy than what GSR or HRV can provide.
As this is a preliminary study, the subjective rating method
can be improved to be more specific for cognitive workload.
Furthermore, we are further analyzing the EEG features
(spatial-spectral components) as well as new related EEG
features (such as connectivity) to further the understanding
of EEG in relation to cognitive workload.

REFERENCES

[1] M. Just, P. Carpenter, and A. Miyake, “Neuroindices of cognitive
workload: neuroimaging, pupillometric and event-related potential
studies of brain work,” Theoretical Issues in Ergonomics Science,
vol. 4, no. 1-2, pp. 56-88, 2003.

[10]

[11]

[12]

[13]

[14]

[15]

2988

T. C. Hankins and G. F. Wilson, “A comparison of heart rate, eye
activity, eeg and subjective measures of pilot mental workload during
flight,” Aviation Space and Environmental Medicine, vol. 69, no. 4,
pp. 360-367, 1998.

S. Hart, “Nasa-task load index (nasa-tlx): 20 years later,” in Human
Factors and Ergonomics Society Annual Meeting Proceedings, 2006,
pp. 904-908.

L. Izso and E. Lang, “Heart period variability as mental effort monitor
in human computer interaction.” Behaviour & Information Technology,
vol. 19, no. 4, pp. 297-306., 2000.

R. Cohen and W. Waters, “Psychophysiological correlates of levels
and stages of cognitive processing,” Neuropsychologia, vol. 23, no. 2,
pp. 243-256, 1985.

A. Gelvin and M. Smith, “Neurophysiological measures of cognitive
workload during human-computer interaction,” Theoretical Issues in
Ergonomics Science, vol. 4, pp. 113-131, 2003.

S. Dimitriadis, Y. Sun, K. Kwok, N. Laskaris, and A. Bezerianos,
“A tensorial approach to access cognitive workload related to mental
arithmetic from eeg functional connectivity estimates,” in Annual
Inernational Conference of the IEEE EMBS, 2013.

G. F. Wilson, J. Estepp, and J. Christensen, “How does day-to-day
viariability in psychophysiological data affect classifier accuracy,” in
Human Factors and Ergonomics Society Annual Meeting Proceedings,
2009, pp. 264-268.

D. T. Jones, P. Vemuri, M. C. Murphy, J. L. Gunter, M. L. Senjem,
M. M. Machulda, S. A. Przybelski, B. E. Gregg, K. Kantarci, D. S.
Knopman, B. F. Boeve, R. C. Petersen, and C. R. Jack, Jr, “Non-
stationarity in the “resting brains” modular architecture,” PLoS ONE,
vol. 7, no. 6, p. 39731, 06 2012.

E. Niedermeyer and F. da Silva, Eds., Electroencephalography: Basic
Principles, Clinical Applications, and Related Fields.  Lippincot
Williams & Wilkins, 2004.

B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Miiller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal Processing Magazine, vol. 25, pp. 41-56, 2008.

K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan, “Filter bank common
spatial pattern (FBCSP) in brain-computer interface,” in International
Joint Conference on Neural Networks (IJCNN2008), 2008, pp. 2391—
2398.

R. A. Horn and C. A. Johnson, Eds., Matrix Analysis.
University Press, 1985.

H. Zhang and C. Guan, “Bayesian learning for spatial filtering in
eeg-based brain-computer interface,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 7, pp. 1-12, 2013.

F. A. C. de Bastos and M. L. R. de Campos, “A fast training algorithm
for unbiased proximal svm,” in ICASSP, 2005.

Cambridge



